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Why information theory?

Understanding the neural code.

Encoding and decoding. We imposed coding schemes, such as a
linear kernel, or a GLM. We possibly lost information in doing so.
Instead, use information:

Don’t need to impose encoding or decoding scheme
(non-parametric).
In particular important for 1) spike timing codes, 2) higher areas.
Estimate how much information is present in a recorded signal.

Caveats:
The decoding process is ignored (upper bound only)
Requires more data, and biases are tricky
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Overview

Entropy, Mutual Information
Entropy Maximization for a Single Neuron
Maximizing Mutual Information
Estimating information
Reading: Dayan and Abbott ch 4, Rieke
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Definitions

For the probability of an event P(x), the quantity

h(p) = − log p(x)

is called ‘surprise‘ or ‘information‘.

Measures the information gained when observing x .
Additive for independent events.
Often log2 is used, then unit is bits (loge has unit nats).
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Surprise
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Definitions

The entropy of a quantity is the average

H(X ) = −
∑

x

P(x) log2 P(x)

Properties:

Continuous, non-negative, H(1) = 0
If pi = 1

n , it increases monotonically with n. H = log2 n.
Parallel independent events add.

[Shannon and Weaver, 1949, Cover and Thomas, 1991,
Rieke et al., 1996]
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Entropy

Discrete variable
H(R) = −

∑
r

p(r) log2 p(r)

Continuous variable at resolution ∆r

H(R) = −
∑

r

p(r)∆r log2(p(r)∆r) = −
∑

r

p(r)∆r log2 p(r)− log2 ∆r

letting ∆r → 0 we have

lim
∆r→0

[H + log2 ∆r ] = −
∫

p(r) log2 p(r)dr

(also called differential entropy)
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Joint, Conditional entropy

Joint entropy:

H(S,R) = −
∑
r ,s

P(S,R) log2 P(S,R)

Conditional entropy:

H(S|R) =
∑

r

P(R = r)H(S|R = r)

= −
∑

r

P(r)
∑

s

P(s|r) log2 P(s|r)

= H(S,R)− H(R)

If S, R are independent

H(S,R) = H(S) + H(R)
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Mutual information

Mutual information:

Im(R; S) =
∑
r ,s

p(r , s) log2
p(r , s)

p(r)p(s)

= H(R)− H(R|S) = H(S)− H(S|R)

Measures reduction in uncertainty of R by knowing S (or vice
versa)
H(R|S) is called noise entropy, the part of the response not
explained by the stimulus.
Im(R; S) ≥ 0
The continuous version is the difference of two entropies, the ∆r
divergence cancels
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Relationships between information measures
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Coding channels
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Coding channels

Can we reconstruct the stimulus? We need a en/decoding model:

P(s|r) =
P(r |s)P(s)

P(r)

How much information is conveyed? This can be addressed
non-parametrically:

Im(S; R) = H(S)− H(S|R) = H(R)− H(R|S)
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Kullback-Leibler divergence

KL-divergence measures distance between two probability
distributions

DKL(P||Q) =

∫
P(x) log2

P(x)

Q(x)
dx

DKL(P||Q) ≡
∑

i

Pi log2
Pi

Qi

Not symmetric (Jensen Shannon divergence is the symmetrised
form)
Im(R; S) = DKL(p(r , s)||p(r)p(s)), hence measures KLD to
independent model.
Often used as probabilistic cost function: DKL(data||model).
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Mutual info between jointly Gaussian variables

I(Y1; Y2) =

∫ ∫
P(y1, y2) log2

P(y1, y2)

P(y1)P(y2)
dy1 dy2 = −1

2
log2(1− ρ2)

ρ is (Pearson-r) correlation coefficient.
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Populations of Neurons

Given
H(R) = −

∫
p(r) log2 p(r)dr− N log2 ∆r

and
H(Ri) = −

∫
p(ri) log2 p(ri)dr− log2 ∆r

We have
H(R) ≤

∑
i

H(Ri)

(proof, consider KL divergence)
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Mutual information in populations of Neurons

Reduncancy can be defined as (compare to above)

R =
nr∑

i=1

I(ri ; s)− I(r; s).

Some codes have R > 0 (redundant code), others R < 0 (synergistic)
Example of synergistic code:
P(r1, r2, s) with P(0,0,1) = P(0,1,0) = P(1,0,0) = P(1,1,1) = 1

4 ,
other probabilities zero
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Entropy Maximization for a Single Neuron

Im(R; S) = H(R)− H(R|S)

If noise entropy H(R|S) is independent of the transformation
S → R, we can maximize mutual information by maximizing H(R)
under given constraints
Possible constraint: response r is 0 < r < rmax. Maximal H(R) if
⇒ p(r) ∼ U(0, rmax) (U is uniform dist)
If average firing rate is limited, and 0 < r <∞ : exponential
distribution is optimal p(x) = 1/x̄exp(−x/x̄). H = log2 ex̄
If variance is fixed and −∞ < r <∞: Gaussian distribution.
H = 1

2 log2(2πeσ2)
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Let r = f (s) and s ∼ p(s). Which f (assumed monotonic)
maximizes H(R) using max firing rate constraint? Require:
P(r) = 1

rmax

p(s) = p(r)
dr
ds

=
1

rmax

df
ds

Thus df/ds = rmaxp(s) and

f (s) = rmax

∫ s

smin

p(s′)ds′

This strategy is known as histogram equalization in signal
processing
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Fly retina

Evidence that the large monopolar cell in the fly visual system carries
out histogram equalization

Contrast response for fly large monopolar cell (points) matches
environment statistics (line) [Laughlin, 1981] (but changes in high
noise conditions)
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V1 contrast responses

Similar in V1, but On and Off channels [Brady and Field, 2000]
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Information of time varying signals

Single analog channel with Gaussian signal s and Gaussian noise η:
r = s + η

I =
1
2

log2(1 +
σ2

s
σ2
η

) =
1
2

log2(1 + SNR)

For time dependent signals I = 1
2T

∫ dω
2π log2(1 + s(ω)

n(ω) )

To maximize information, when variance of the signal is constrained,
use all frequency bands such that signal+noise = constant.
Whitening. Water filling analog:
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Information of graded synapses

Light - (photon noise) - photoreceptor - (synaptic noise) - LMC
At low light levels photon noise dominates, synaptic noise is negligible.
Information rate: 1500 bits/s
[de Ruyter van Steveninck and Laughlin, 1996].
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Spiking neurons: maximal information

Spike train with N = T/δt bins [Mackay and McCullogh, 1952] δt
“time-resolution”.
pN = N1 events, #words = N!

N1!(N−N1)!

Maximal entropy if all words are equally likely.
H =

∑
pi log2 pi = log2 N!− log2 N1!− log2(N − N1)!

Use for large x that log x! ≈ x(log x − 1)

H =
−T
δt

[p log2 p + (1− p) log2(1− p)] log2(e)

For low rates p � 1, setting λ = (δt)p:

H = Tλ log2(
e
λδt

)
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Spiking neurons

Calculation incorrect when multiple spikes per bin.
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Spiking neurons: rate code

[Stein, 1967]

Measure rate in window T , during which stimulus is constant.
Periodic neuron can maximally encode [1 + (fmax − fmin)T ] stimuli
H ≈ log2[1 + (fmax − fmin)T ]. Note, only ∝ log(T )
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[Stein, 1967]
Similar behaviour for Poisson : H ∝ log(T )
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Maximizing Information Transmission: single output

Single linear neuron with post-synaptic noise

v = w · u + η

where η is an independent noise variable

Im(u; v) = H(v)− H(v |u)

Second term depends only on p(η)

To maximize Im need to maximize H(v); sensible constraint is that
‖w‖2 = 1
If u ∼ N(0,Q) and η ∼ N(0, σ2

η) then v ∼ N(0,wT Qw + σ2
η)
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For a Gaussian RV with variance σ2 we have H = 1
2 log 2πeσ2. To

maximize H(v) we need to maximize wT Qw subject to the
constraint ‖w‖2 = 1
Thus w ∝ e1 so we obtain PCA
If v is non-Gaussian then this calculation gives an upper bound on
H(v) (as the Gaussian distribution is the maximum entropy
distribution for a given mean and covariance)
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Infomax

Infomax: maximize information in multiple outputs wrt weights
[Linsker, 1988]

v = Wu + η

H(v) =
1
2

log det(〈vvT 〉)

Example: 2 inputs and 2 outputs. Input is correlated. w2
k1 + w2

k2 = 1.

At low noise independent coding, at high noise joint coding.
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Estimating information

Information estimation requires a lot of data.
Most statistical quantities are unbiased (mean, var,...).
But both entropy and noise entropy have bias.

[Panzeri et al., 2007]

30 / 36



Try to fit 1/N correction [Strong et al., 1998]
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Common technique for Im: shuffle correction [Panzeri et al., 2007]
See also: [Paninski, 2003, Nemenman et al., 2002]
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Summary

Information theory provides non parametric framework for coding
Optimal coding schemes depend strongly on noise assumptions
and optimization constraints
In data analysis biases can be substantial

33 / 36



References I

Brady, N. and Field, D. J. (2000).
Local contrast in natural images: normalisation and coding efficiency.
Perception, 29(9):1041–1055.

Cover, T. M. and Thomas, J. A. (1991).
Elements of information theory.
Wiley, New York.

de Ruyter van Steveninck, R. R. and Laughlin, S. B. (1996).
The rate of information transfer at graded-potential synapses.
Nature, 379:642–645.

Laughlin, S. B. (1981).
A simple coding procedure enhances a neuron’s information capacity.
Zeitschrift für Naturforschung, 36:910–912.

Linsker, R. (1988).
Self-organization in a perceptual network.
Computer, 21(3):105–117.

Mackay, D. and McCullogh, W. S. (1952).
The limiting information capacity of neuronal link.
Bull Math Biophys, 14:127–135.

34 / 36



References II

Nemenman, I., Shafee, F., and Bialek, W. (2002).
Entropy and Inference, Revisited.
nips, 14.

Paninski, L. (2003).
Estimation of Entropy and Mutual Information.
Neural Comp., 15:1191–1253.

Panzeri, S., Senatore, R., Montemurro, M. A., and Petersen, R. S. (2007).
Correcting for the sampling bias problem in spike train information measures.
J Neurophysiol, 98(3):1064–1072.

Rieke, F., Warland, D., de Ruyter van Steveninck, R., and Bialek, W. (1996).
Spikes: Exploring the neural code.
MIT Press, Cambridge.

Shannon, C. E. and Weaver, W. (1949).
The mathematical theory of communication.
Univeristy of Illinois Press, Illinois.

Stein, R. B. (1967).
The information capacity of nerve cells using a frequency code.
Biophys J, 7:797–826.

35 / 36



References III

Strong, S. P., Koberle, R., de Ruyter van Steveninck, R. R., and Bialek, W. (1998).
Entropy and Information in Neural Spike Trains.
Phys Rev Lett, 80:197–200.

36 / 36


