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Why information theory?

Understanding the neural code.

@ Encoding and decoding. We imposed coding schemes, such as a
linear kernel, or a GLM. We possibly lost information in doing so.
@ Instead, use information:
@ Don’t need to impose encoding or decoding scheme
(non-parametric).
In particular important for 1) spike timing codes, 2) higher areas.
e Estimate how much information is present in a recorded signal.
Caveats:

e The decoding process is ignored (upper bound only)
e Requires more data, and biases are tricky
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Overview

@ Entropy, Mutual Information

@ Entropy Maximization for a Single Neuron
@ Maximizing Mutual Information

@ Estimating information

@ Reading: Dayan and Abbott ch 4, Rieke
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For the probability of an event P(x), the quantity

h(p) = —log p(x)
is called ‘surprise’ or ‘information’.

@ Measures the information gained when observing x.
@ Additive for independent events.
@ Often log, is used, then unit is bits (log, has unit nats).
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Surprise
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The entropy of a quantity is the average

H(X) =~ P(x)logs P(x)

Properties:
@ Continuous, non-negative, H(1) =0

e If p; = 1, it increases monotonically with n. H = log, n.
@ Parallel independent events add.

[Shannon and Weaver, 1949, Cover and Thomas, 1991,
Rieke et al., 1996]
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Discrete variable
H(R) = Zp(r logz p(r)

Continuous variable at resolution Ar
H(R) = =Y _ p(r)Arlogy(p(r)Ar) = =Y p(r)Arlogy p(r) — logy Ar
r r
letting Ar — 0 we have

lim [H + logy Ar] = — /p(r) log, p(r)dr
Ar—0

(also called differential entropy)
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Joint, Conditional entropy

Joint entropy:

H(S,R) = —>_ P(S R)log, P(S,R)

Conditional entropy:
H(S|R) = ZP H(S|IR=r)
= - Z P(r)>_ P(slr)logz P(s|r)
r S
= H(S,R) - H(R)
If S, R are independent

H(S, R) = H(S) + H(R)
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Mutual information

Mutual information:

p(r,s)
= 2 P08 o)

=H(H’)— H(R|S) = H(S) — H(S|R)

@ Measures reduction in uncertainty of R by knowing S (or vice
versa)

@ H(R|S) is called noise entropy, the part of the response not
explained by the stimulus.

® In(R;S)>0

@ The continuous version is the difference of two entropies, the Ar
divergence cancels
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Relationships between information measures

H(Y)

1(X;Y)

H(Y|X)
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Coding channels

The big picture Source
SOURCE
Compressor Decompressor
CODING
CHANNEL
Encoder Decoder
CODING

L Noisy J

channel
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Coding channels

Can we reconstruct the stimulus? We need a en/decoding model:

P(r|s)P(s)

Plsin = =50

How much information is conveyed? This can be addressed
non-parametrically:

In(S; R) = H(S) — H(S|R) = H(R) — H(R|S)
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Kullback-Leibler divergence

@ KL-divergence measures distance between two probability
distributions

Du(PII) = [ P(x)logs gy o

P;
DKL(PHQ) = Z P,' |0g2 6’,
i

@ Not symmetric (Jensen Shannon divergence is the symmetrised
form)

@ In(R; S) = Dk (p(r, s)||p(r)p(s)), hence measures KLD to
independent model.

@ Often used as probabilistic cost function: Dy, (datal|model).
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Mutual info between jointly Gaussian variables

107 Y2) = [ [ PUpedloe 1 dy o = 5 logal1 - 42)

p is (Pearson-r) correlation coefficient.

14/36



Populations of Neurons

Given

H(R) = — /p(r) logo p(r)dr — Nlog, Ar
and

H(R) =~ [ plr)logz p(r)a — log, Ar
We have

H(R) < 3 H(R)

(proof, consider KL divergence)
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Mutual information in populations of Neurons

Reduncancy can be defined as (compare to above)

R=>_I(r;s)—Ir;s).

i=1

Some codes have R > 0 (redundant code), others R < 0 (synergistic)
Example of synergistic code:

P(ry, r2, s) with P(0,0,1) = P(0,1,0) = P(1,0,0) = P(1,1,1) = Z
other probabilities zero
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Entropy Maximization for a Single Neuron

In(R; S) = H(R) — H(R|S)

If noise entropy H(R|S) is independent of the transformation

S — R, we can maximize mutual information by maximizing H(R)
under given constraints

Possible constraint: response ris 0 < r < rma. Maximal H(R) if
= p(r) ~ U(0, rmax) (U is uniform dist)

If average firing rate is limited, and 0 < r < oo : exponential
distribution is optimal p(x) = 1/xexp(—x/X). H = log, ex

If variance is fixed and —co < r < oo: Gaussian distribution.

H = } logy(2meo?)
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@ Let r = f(s) and s ~ p(s). Which f (assumed monotonic)
maximizes H(R) using max firing rate constraint? Require:
P(r) =7

I max

ar 1 df
p(s) = p(r) g =

Thus df/ds = ruaxp(s) and

fmax dS

S
f(S) = Fnax p(s')ds’

Smin

@ This strategy is known as histogram equalization in signal
processing
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Fly retina

Evidence that the large monopolar cell in the fly visual system carries
out histogram equalization
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Contrast response for fly large monopolar cell (points) matches
environment statistics (line) [Laughlin, 1981] (but changes in high

noise conditions)
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V1 contrast responses
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Figure 3. The distribution of image contrast in natural scenes: (a) both positive and negative,
and (b) positive alone. In this study, sensor responses were pooled across 46 images, 5 spatial
frequencies, and 4 orientations. The contrast bin width was 1%. (c) The integral of the positive-
contrast histogram shown by the solid line defines the optimal contrast-response function.
A hyperbolic function shown by the dotted line with R, = 1.0, Cs = 6.35%, and n = 1.85
provides a good fit to the data. SD = standard deviation.

Similar in V1, but On and Off channels [Brady and Field, 2000]
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Information of time varying signals

Single analog channel with Gaussian signal s and Gaussian noise 7:
r=s+n
1 2

o 1
logo(1 + ;%) =3 logo(1 + SNR)

| =

2

For time dependent signals / = | 5T [ 5 @ jogy(1 + E:g)
To maximize information, when variance of the signal is constrained,
use all frequency bands such that signal+noise = constant.

Whitening. Water filling analog:

21/36



Information of graded synapses

Light - (photon noise) - photoreceptor - (synaptic noise) - LMC

At low light levels photon noise dominates, synaptic noise is negligible.
Information rate: 1500 bits/s

[de Ruyter van Steveninck and Laughlin, 1996].
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Spiking neurons: maximal information

Spike train with N = T /4t bins [Mackay and McCullogh, 1952] 4t
“time-resolution”.

pN = Nj events, #words = W

Maximal entropy if all words are equally likely.

H =" pilogy pj = loga N! — logy Ni! — loga(N — Ny)!

Use for large x that log x! ~ x(logx — 1)

-T
H= W[plogszr (1 —p)loga(1 — p)]logz(e)
For low rates p < 1, setting A = (6t)p:

e

H=T\ IOgZ()\gt)
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Spiking neurons
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Calculation incorrect when multiple spikes per bin.
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Spiking neurons: rate code

[Stein, 1967]

FiGURe 2 Information capacity of a completely
regular neuron (solid line) as a function of the

ion of a maintai i The dashed lines
are upper and lower limits which converge rapidly
as time (on a logarithmic scale) increases. The
values were calculated for the example described in
the text. The range of neuronal impulse frequencies
was from 10 to 100 impulses/sec.

Capacity (bits)

2 5 10 20 5 100
Time (msec)

@ Measure rate in window T, during which stimulus is constant.
Periodic neuron can maximally encode [1 + (fmax — fmin) T] stimuli
H =~ logz[1 + (fmax — fmin) T]. Note, only  log(T)
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Information Capacity

Log Time

FiGURE 7 Schematic representation of the information capacity as a function of stimulus
duration for a neuron, (a) discharging randomly and using a frequency code, (b) discharging
fairly regularly and using a frequency code, (¢) using a binary pulse code, and (d) using an
interval code. Explanation in text.

[Stein, 1967]
Similar behaviour for Poisson : H o log(T)
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Maximizing Information Transmission: single output

Single linear neuron with post-synaptic noise
V=W-U+n
where 7 is an independent noise variable

Im(u; v) = H(v) — H(v|u)

@ Second term depends only on p(n)

@ To maximize I, need to maximize H(v); sensible constraint is that
w2 = 1
o Ifu~ N(0,Q) and 5 ~ N(0,02) then v ~ N(O,w’ Qw + o2)
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@ For a Gaussian RV with variance 2 we have H = } log2rec?. To
maximize H(v) we need to maximize w’ Qw subject to the
constraint |w|? = 1

@ Thus w «x e4 so we obtain PCA

@ If v is non-Gaussian then this calculation gives an upper bound on
H(v) (as the Gaussian distribution is the maximum entropy
distribution for a given mean and covariance)
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Infomax

Infomax: maximize information in multiple outputs wrt weights

[Linsker, 1988]

v=Wu+n

H(v) = 5

_1 log det((vvT))

Example: 2 inputs and 2 outputs. Input is correlated. wg, + w2, = 1.
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At low noise independent coding, at high noise joint coding.

29/36



Estimating information

Information estimation requires a lot of data.
Most statistical quantities are unbiased (mean, var,...).
But both entropy and noise entropy have bias.
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FIG. 2. The frequency of occurrence for different words in
the spike train, with A7 =3 ms and 7 = 30 ms. Words
are placed in order so that the histogram is monotonically
decreasing; at this value of 7' the most likely word corresponds
to no spikes. Inset shows the dependence of the entropy,

p from this ding to Eg. (1), on the
fraction of data included in the analysis. Also plotted is a
squares fit to the form § = Sy + §)/size + S>

intercept S is our extrapolation to the true value of the entropy
with infinite data [11].
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FIG. 3. The total and noise entropies per unit time are
plotted versus the reciprocal of the window size, with the
time resolution held fixed at A7 = 3 ms. Results are given
both for the direct estimate and for the bounding procedure
described in the text, and for each data point we apply the
extrapolation procedures of Fig. 2 (inset). Dashed lines indicate
extrapolations to infinite word length, as discussed in the text,
and arrows indicate upper bounds obtained by differentiating
S(T) 7).

Try to fit 1/N correction [Strong et al., 1998]
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FIG. 3. Comparison of the performance of different bias
correction methods. The information estimates I(S;R) and
L,(S;R) are plotted as a function of the available number of
trials per stimulus. A and B: mean = SD (over 50 simulations)
of I(S;R). C and D: mean + SD (over 50 simulations) of
I,(S;R). Various methods were used to correct for the bias:
plug-in estimation (i.e., no bias correction), PT, QE, BUB, and
NSB (see text). A and C and B and D report results using
ingle-cell and cortical spike

trains, respectively (see main text).

See also: [Paninski, 2003, Nemenman et al., 2002]
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@ Information theory provides non parametric framework for coding

@ Optimal coding schemes depend strongly on noise assumptions
and optimization constraints

@ In data analysis biases can be substantial
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