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Why information theory

Understanding the neural code.

Encoding and decoding. We imposed coding schemes, such as
2nd-order kernel, or NLP. We possibly lost information in doing so.
Instead, use information:

Don’t need to impose encoding or decoding scheme
(non-parametric).
In particular important for 1) spike timing codes, 2) higher areas.
Estimate how much information is coded in certain signal.

Caveats:
No easy decoding scheme for organism (upper bound only)
Requires more data and biases are tricky
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Overview

Entropy, Mutual Information
Entropy Maximization for a Single Neuron
Maximizing Mutual Information
Estimating information
Reading: Dayan and Abbott ch 4, Rieke
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Definition

The entropy of a quantity is defined as
H(X ) = −∑

x P(x) log2 P(x)
This is not ’derived’, nor fully unique, but it fulfills these criteria:

Continuous
If pi = 1

n , it increases monotonically with n. H = log2 n.
Parallel independent channels add.

“Unit”: bits
Entropy can be thought of as physical entropy, “richness” of distribution
[Shannon and Weaver, 1949, Cover and Thomas, 1991,
Rieke et al., 1996]
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Entropy

Discrete variable
H(R) = −

∑

r

p(r) log2 p(r)

Continuous variable at resolution ∆r

H(R) = −
∑

r

p(r)∆r log2(p(r)∆r) = −
∑

r

p(r)∆r log2 p(r)− log2 ∆r

letting ∆r → 0 we have

lim
∆r→0

[H + log2 ∆r ] = −
∫

p(r) log2 p(r)dr

(also called differential entropy)
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Joint, Conditional entropy

Joint entropy:

H(S,R) = −
∑

r ,s

P(S,R) log2 P(S,R)

Conditional entropy:

H(S|R) =
∑

r

P(R = r)H(S|R = r)

= −
∑

r

P(r)
∑

s

P(s|r) log2 P(s|r)

= H(S,R)− H(R)

If S, R are independent

H(S,R) = H(S) + H(R)
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Mutual information

Mutual information:

Im(R; S) =
∑

r ,s

p(r , s) log2
p(r , s)

p(r)p(s)

= H(R)− H(R|S) = H(S)− H(S|R)

Measures reduction in uncertainty of R by knowing S (or vice
versa)
Im(R; S) ≥ 0
The continuous version is the difference of two entropies, the ∆r
divergence cancels

7 / 35

Mutual Information

The joint histogram determines mutual information.
Given P(r , s)⇒ Im.
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Mutual Information: Examples
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Only for the left joint probability Im > 0 (how much?). On the right,
knowledge about Y1 does not inform us about Y2.
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Kullback-Leibler divergence

KL-divergence measures distance between two probability
distributions
DKL(P||Q) =

∫
P(x) log2

P(x)
Q(x)dx , or DKL(P||Q) ≡∑

i Pi log2
Pi
Qi

Not symmetric, but can be symmetrized
Im(R; S) = DKL(p(r , s)||p(r)p(s)).
Often used as probabilistic cost function: DKL(data||model).
Other probability distances exist (e.g. earth-movers distance)
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Mutual info between jointly Gaussian variables

I(Y1; Y2) =

∫ ∫
P(y1, y2) log2

P(y1, y2)

P(y1)P(y2)
dy1 dy2 = −1

2
log2(1− ρ2)

ρ is (Pearson-r) correlation coefficient.
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Populations of Neurons

Given
H(R) = −

∫
p(r) log2 p(r)dr− N log2 ∆r

and
H(Ri) = −

∫
p(ri) log2 p(ri)dr− log2 ∆r

We have
H(R) ≤

∑

i

H(Ri)

(proof, consider KL divergence)
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Mutual information in populations of Neurons

Reduncancy can be defined as (compare to above)

R =
nr∑

i=1

I(ri ; s)− I(r; s).

Some codes have R > 0 (redundant code), others R < 0 (synergistic)
Example of synergistic code: P(r1, r2, s) with
P(0,0,1) = P(0,1,0) = P(1,0,0) = P(1,1,1) = 1

4
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Entropy Maximization for a Single Neuron

Im(R; S) = H(R)− H(R|S)

If noise entropy H(R|S) is independent of the transformation
S → R, we can maximize mutual information by maximizing H(R)
under given constraints
Possible constraint: response r is 0 < r < rmax. Maximal H(R) if
⇒ p(r) ∼ U(0, rmax) (U is uniform dist)
If average firing rate is limited, and 0 < r <∞ : exponential
distribution is optimal p(x) = 1/x̄exp(−x/x̄). H = log2 ex̄
If variance is fixed and −∞ < r <∞: Gaussian distribution.
H = 1

2 log2(2πeσ2) (note funny units)
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Let r = f (s) and s ∼ p(s). Which f (assumed monotonic)
maximizes H(R) using max firing rate constraint? Require:
P(r) = 1

rmax

p(s) = p(r)
dr
ds

=
1

rmax

df
ds

Thus df/ds = rmaxp(s) and

f (s) = rmax

∫ s

smin

p(s′)ds′

This strategy is known as histogram equalization in signal
processing
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Fly retina

Evidence that the large monopolar cell in the fly visual system carries
out histogram equalization

Contrast response for fly large monopolar cell (points) matches
environment statistics (line) [Laughlin, 1981] (but changes in high
noise conditions)
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V1 contrast responses

Similar in V1, but On and Off channels [Brady and Field, 2000]
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Information of time varying signals

Single analog channel with Gaussian signal s and Gaussian noise η:
r = s + η

I =
1
2

log2(1 +
σ2

s
σ2
η

) =
1
2

log2(1 + SNR)

For time dependent signals I = 1
2T

∫ dω
2π log2(1 + s(ω)

n(ω) )

To maximize information, when variance of the signal is constrained,
use all frequency bands such that signal+noise = constant.
Whitening. Water filling analog:
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Information of graded synapses

Light - (photon noise) - photoreceptor - (synaptic noise) - LMC
At low light levels photon noise dominates, synaptic noise is negligible.
Information rate: 1500 bits/s
[de Ruyter van Steveninck and Laughlin, 1996].
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Spiking neurons: maximal information

Spike train with N = T/δt bins [Mackay and McCullogh, 1952] δt
“time-resolution”.
pN = N1 events, #words = N!

N1!(N−N1)!

Maximal entropy if all words are equally likely.
H =

∑
pi log2 pi = log2 N!− log2 N1!− log2(N − N1)!

Use for large x that log x! ≈ x(log x − 1)

H =
−T
δt

[p log2 p + (1− p) log2(1− p)]

For low rates p � 1, setting λ = (δt)p:

H = Tλ log2(
e
λδt

)
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Spiking neurons

Calculation incorrect when multiple spikes per bin. Instead, for large
bins maximal information for exponential distribution:
P(n) = 1

Z exp[−n log(1 + 1
〈n〉)]

H = log2(1 + 〈n〉) + 〈n〉 log2(1 + 1
〈n〉) ≈ log2(1 + 〈n〉) + 1
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Spiking neurons: rate code

[Stein, 1967]

Measure rate in window T , during which stimulus is constant.
Periodic neuron can maximally encode [1 + (fmax − fmin)T ] stimuli
H ≈ log2[1 + (fmax − fmin)T ]. Note, only ∝ log(T )
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[Stein, 1967]
Similar behaviour for Poisson : H ∝ log(T )
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Spiking neurons: dynamic stimuli

[de Ruyter van Steveninck et al., 1997], but see
[Warzecha and Egelhaaf, 1999].
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Maximizing Information Transmission: single output

Single linear neuron with post-synaptic noise

v = w · u + η

where η is an independent noise variable

Im(u; v) = H(v)− H(v |u)

Second term depends only on p(η)

To maximize Im need to maximize H(v); sensible constraint is that
‖w‖2 = 1
If u ∼ N(0,Q) and η ∼ N(0, σ2

η) then v ∼ N(0,wT Qw + σ2
η)
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For a Gaussian RV with variance σ2 we have H = 1
2 log 2πeσ2. To

maximize H(v) we need to maximize wT Qw subject to the
constraint ‖w‖2 = 1
Thus w ∝ e1 so we obtain PCA
If v is non-Gaussian then this calculation gives an upper bound on
H(v) (as the Gaussian distribution is the maximum entropy
distribution for a given mean and covariance)
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Infomax

Infomax: maximize information in multiple outputs wrt weights
[Linsker, 1988]

v = Wu + η

H(v) =
1
2

log det(〈vvT 〉)

Example: 2 inputs and 2 outputs. Input is correlated. w2
k1 + w2

k2 = 1.

At low noise independent coding, at high noise joint coding.
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Estimating information

Information estimation requires a lot of data.
Most statistical quantities are unbiased (mean, var,...).
But both entropy and noise entropy have bias.

[Panzeri et al., 2007]
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Try to fit 1/N correction [Strong et al., 1998]
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Common technique for Im: shuffle correction [Panzeri et al., 2007]
See also: [Paninski, 2003, Nemenman et al., 2002]
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Summary

Information theory provides non parametric framework for coding
Optimal coding schemes depend strongly on noise assumptions
and optimization constraints
In data analysis biases can be substantial
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