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Entropy, Mutual Information

Entropy Maximization for a Single Neuron
Maximizing Mutual Information
Estimating information

Reading: Dayan and Abbott ch 4, Rieke
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Why information theory

Understanding the neural code.

@ Encoding and decoding. We imposed coding schemes, such as
2nd-order kernel, or NLP. We possibly lost information in doing so.
@ Instead, use information:

e Don’t need to impose encoding or decoding scheme
(non-parametric).
In particular important for 1) spike timing codes, 2) higher areas.
e Estimate how much information is coded in certain signal.

Caveats:

e No easy decoding scheme for organism (upper bound only)
e Requires more data and biases are tricky
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The entropy of a quantity is defined as
H(X) = =3, P(x) logz P(x)
This is not ‘derived’, nor fully unique, but it fulfills these criteria:
@ Continuous
e If p = 1, it increases monotonically with n. H = log, n.
@ Parallel independent channels add.
“Unit”: bits
Entropy can be thought of as physical entropy, “richness” of distribution

[Shannon and Weaver, 1949, Cover and Thomas, 1991,
Rieke et al., 1996]
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Joint, Conditional entropy

Joint entropy:
Discrete variable

H(R) = - p(r) logz p(r) H(S,R) = - ; P(S.R)log, P(S, R)
g :
Continuous variable at resolution Ar Conditional entropy:
H(R) = =) _p(r)Arlogy(p(r)Ar) = = p(r)Arlog, p(r) — logy Ar H(SIR) = Y P(R=r)H(S|IR=r)
r r r
letting Ar — 0 we have = = _P(r)>_P(s|r)log, P(s]r)
r S

Jiim [H+ log, Ar] = [ p(r)logz p(r)or = H(S,R) - H(R)

If S, R are independent
(also called differential entropy)

H(S,R) = H(S) + H(R)
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Mutual information Mutual Information

Mutual information:

In(R: 8) = _ p(r.s)log, pff)r;i)

- H(R) — H(R|S) = H(S) — H(S|R)

@ Measures reduction in uncertainty of R by knowing S (or vice
versa)

@ In(R;S)>0

@ The continuous version is the difference of two entropies, the Ar

divergence cancels The joint histogram determines mutual information.
Given P(r,s) = In.
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Mutual Information: Examples

Y,

Y, Y,
non non
smoker smoker smoker smoker

lung lung

cancer 173 0 cancer 179 2/9

Y,

no lung 0 2/3 nolung ) 4/9

cancer cancer

Kullback-Leibler divergence

@ KL-divergence measures distance between two probability
distributions

® Dii(P||Q) = [ P(x) log gre)dx, or Die(P||Q) =
@ Not symmetric, but can be symmetrized

® Im(R; S) = Dkc(p(r, s)l|p(r)p(s))-

@ Often used as probabilistic cost function: D, (data||model).
@ Other probability distances exist (e.g. earth-movers distance)

Pi
>_iPiloga o
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Mutual Information: Examples

non
smoker smoker smoker
lung lung
cancer 173 0 cancer 179
Y, Y,
no lung 0 23 no lung 2/9
cancer cancer

Y,

non
smoker

2/9
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Only for the left joint probability /,, > 0 (how much?). On the right,

knowledge about Y; does not inform us about Ya.
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Mutual info between jointly Gaussian variables

dyy dy» =

I(Yy; Y2) = // (¥1, ¥2) logo P((y;’}(/i/))

p is (Pearson-r) correlation coefficient.

1
) logo(1 — 02)
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Populations of Neurons Mutual information in populations of Neurons

Given

H(R) = — /p(r) log, p(r)dr — Nlogy Ar Reduncancy can be defined as (compare to above)

nr

and R=> I(r;s)—I(r;s).

H(R) = - | p(r)logz p(n)ol — log, Ar =
We have Some codes have R > 0 (redundant code), others R < 0 (synergistic)

H(R) < Z H(R) Example of synergistic code: P(ry, r2, s) with
i

P(0,0,1) = P(0,1,0) = P(1,0,0) = P(1,1,1) = }
(proof, consider KL divergence)
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Entropy Maximization for a Single Neuron

@ Let r = f(s) and s ~ p(s). Which f (assumed monotonic)
maximizes H(R) using max firing rate constraint? Require:

Im(R; S) = H(R) — H(R|S) P(r) = -
, . , dr 1 df
@ If noise entropy H(R|S) is independent of the transformation p(s) = p(r)d_ =
S — R, we can maximize mutual information by maximizing H(R) S fmax GS
under given constraints Thus df /ds = nnaxp(s) and
@ Possible constraint: response ris 0 < r < rmax. Maximal H(R) if s
= p(r) ~ U(0, rmax) (U is uniform dist) f(S) = fmax [ p(s)dS’

Smin

@ If average firing rate is limited, and 0 < r < oo : exponential
distribution is optimal p(x) = 1/xexp(—x/X). H = log, ex

@ If variance is fixed and —oco < r < oco: Gaussian distribution.
H = } logy(2mea?) (note funny units)

@ This strategy is known as histogram equalization in signal
processing
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Fly retina V1 contrast responses

Evidence that the large monopolar cell in the fly visual system carries

out histogram equalization e 048
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Figure 3. The distribution of image contrast in natural scenes: (a) both positive and negative,
Contrast and (b) positive alone. In this study, sensor responses were pooled across 46 images, 5 spatial

frequencies, and 4 orientations. The contrast bin width was 1%. (c) The integral of the positive-
contrast histogram shown by the solid line defines the optimal contrast-response function.
A hyperbolic function shown by the dotted line with R, = 1.0, Cs = 6.35%, and n = 1.85

Contrast response for fly large monopolar cell (points) matches provides  good it 1 the data. 5D = standard deviion.
environment statistics (line) [Laughlin, 1981] (but changes in high
noise conditions)

Similar in V1, but On and Off channels [Brady and Field, 2000]
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Information of time varying signals Information of graded synapses

Single analog channel with Gaussian signal s and Gaussian noise 7:
r=s+n

1 o5, 1 NR
I:§Iog2(1+a—%)=§|0g2(1+3 ) g

For time dependent signals | = 3T [ 92 log,(1 + %)

To maximize information, when variance of the signal is constrained,
use all frequency bands such that signal+noise = constant.
Whitening. Water filling analog:

response (mV)

20 o & 5 100 001 o1 1 frequency (Hz) frequency (Hz)

3; Light - (photon noise) - photoreceptor - (synaptic noise) - LMC
At low light levels photon noise dominates, synaptic noise is negligible.

Information rate: 1500 bits/s
O [de Ruyter van Steveninck and Laughlin, 1996].

frequency (Hz)
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Spiking neurons: maximal information Spiking neurons

Spike train with N = T/§t bins [Mackay and McCullogh, 1952] §t ] s I e S S
“time-resolution”. mi |||
pN = N; events, #words = W
Maximal entropy if all words are equally likely.
H =" pilogz pj = loga N! — logy Ni! — logy(N — Ny)! v
Use for large x that log x! ~ x(logx — 1)

formation 1 s (bits)

fi

Information per spike (bits)

- T I o0 1 | 1 1
H = 6_t[p |0g2 p + (1 — p) |0g2(1 — p)] 0 20 40RME(H7)50 80 00 0 20 AORM‘H”w ) 100
_ Calculation incorrect when multiple spikes per bin. Instead, for large
For low rates p < 1, setting A = (6t)p: bins maximal information for exponential distribution:
b T € P(n) = J exp[—nlog(1 + 7]
= TAloga(557) H = loga(1 + (1) + (n) logo(1 + 1) ~ logo(1 + () + 1
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Spiking neurons: rate code

[Stein, 1967]

Information Capacity

FIGURE 2 Information capacity of a completely
regular neuron (solid line) as a function of the
duration of a maintained stimulus. The dashed lines
are upper and lower limits which converge rapidly
as time (on a logarithmic scale) increases. The
values were calculated for the example described in .
the text. The range of neuronal impulse frequencies T
N . N . was from 10 to 100 impulses/sec. Loq ime
2 e (mze?) 50 100 FIGURE 7 Schematic representation of the information capacity as a function of stimulus
duration for a neuron, (@) discharging randomly and using a frequency code, (b) discharging
fairly regularly and using a frequency code, (c) using a binary pulse code, and (d) using an
interval code. Explanation in text.

[Stein, 1967]
Similar behaviour for Poisson : H o log(T)

Capacity (bits)

1 1

Measure rate in window T, during which stimulus is constant.
Periodic neuron can maximally encode [1 + (fmax — fmin) T] Stimuli
H =~ logo[1 + (fmax — fmin) T]. Note, only o log(T)
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Spiking neurons: dynamic stimuli Maximizing Information Transmission: single output

E v
u noise

Single linear neuron with post-synaptic noise

V=W -U-+ng

where 7 is an independent noise variable

oo qor H 7
P(Wit) = 1800 ms P(W)

Fig. 3. Word frequency distributions and information transfer. (A) Two segments from 100 response / m ( u , V) —_ H ( v) —_ H ( |74 | u)

traces of H1, sar\ gatabwuteooa nd 1800 ms, respectively, after onset of the repeated stimulus su'Fa
Constructior res

&l word frequendies. We start with a set of spike tr
600 ms trese spike trains
I

n i retogran, P13 = 600 me. wrgre he words ars rdered accordng 1o el uobabuy ©he

in (B), but now starting at 1800 ms. (D) Distribution, P{W), of all words throughout the experi t. Words
are defined Inthe same way as in (8) and (G). However, here they are taken from the long (Qoonmes 108) S d t d d | p
oot ot o0 S AR o o S B Tt o ppsndant sl @ oecond term aepenas only on p(n
sampies. Thus, stepping in 3-ms bins, ~3 x 10° werds are sampled, and the distribution shown here

fep @ To maximize I, need to maximize H(v); sensible constraint is that
2
de Ruyt St inck et al., 1997], but i =1
[de Ruyter van Steveninck et al., 1997], but see o Ifu~ N(0,Q) and n ~ N(0,02) then v ~ N(0,w” Qw + o2)

[Warzecha and Egelhaaf, 1999].
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Infomax

Infomax: maximize information in multiple outputs wrt weights
[Linsker, 1988]

@ For a Gaussian RV with variance 2 we have H = } log 2res?. To v=Wu+n
maximize H(v)zvie need to maximize w' Qw subject to the H(v) = * log det((wvT))
constraint ||w||< = 1
@ Thus w x e4 so we obtain PCA Example: 2 inputs and 2 outputs. Input is correlated. w2, + w2, = 1.
@ If v is non-Gaussian then this calculation gives an upper bound on o
H(v) (as the Gaussian distribution is the maximum entropy . \‘\\
distribution for a given mean and covariance) 5
I /
uy %e | -:a
uy @42 — - . -
noise Noise Level */(?

At low noise independent coding, at high noise joint coding.
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Estimating information

. oo N éo;e'.,'..".,'.l',.,m_%
. . . w = El
Information estimation requires a lot of data. 2 soumf EE
-~ 1 = T T |
. L. -, . - 3 v
Most statistical quantities are unbiased (mean, var,...). . B oo ] . *
= - = -
. . £ o000 l £ 50465 ’L EE L - -
But both entropy and noise entropy have bias. g R % soob EENN s o L —
E 3
A NON - INFORMATIVE NEURON S oooms \ s SIS B Gbound (ot enfopy rate)
STIMULUS STIMULUS ° ) 0 1 2 3 4 5 2 0 B
ol Ind inverse data fraction A
@03 | g 5x10°8 | E ; -
é oos| | g o mf aa iy PR 4 1
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R e e e e g b oisssiopy e
g S
=] o] i
8 pafemiis H e oal 1 rank ° 1 5 = = a
. o 20 4 100
T s w FIG. 2. The frequency of occurrence for different words in 1/ (sect)
RESPONSES INFORMATION the spike train, with A7 =3 ms and 7 = 30 ms. Words

B INFORMATIVE NEURON

are placed in order so that the histogram is monotonically
decreasing; at this value of 7' the most likely word corresponds
to no spikes. Inset shows the dependence of the entropy,

FIG. 3. The total and noise entropies per unit time are
plotted versus the reciprocal of the window size, with the
time resolution held fixed at A7 = 3 ms. Results are given

STIMULUS STIMULUS computed from this histogram according to Eq. (1), on the both for the direct estimate and for the bounding procedure
01 | fraction of data included in the analysis. Also plnll(, s aleast described in the text, and for each data point we apply the
3 squares fit to the form § = Sy + §y/size + S»/size>. The extrapolation procedures of Fig. 2 (inset). Dashed lines indicate
& ul | intercept Sy is our extrapolation to the true v.nlu; of the entropy ~ extrapolations to infinite word length, as discussed in the text,
Qo "—| ' 0% | with infinite data [11]. and arrows indicate upper bounds obtained by differentiating
g S(T) (7).
H 0
2 1 5 10 1 5 10 05 0.66 1
3 . .
S
2. d Try to fit 1/N correction [Strong et al., 1998]
<
=
1
1 5 10 1 5 10 05 0.66 H
[Panzeri et al., 2007]
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A Single cell B Population
A LY

m 0.8 FIG. 3. Comparison of the performance of different bias
g B correction methods. The information estimates I(S;R) and
- L;,(S;R) are plotted as a function of the available number of
g 6 8 10 12 trials per stimulus. A and B: mean = SD (over 50 simulations) I f . h . . f k f .
= of I(S;R). C and D: mean = SD (over 50 simulations) of
g C Single cell D Population I,,(S;R). Various methods were used to correct for the bias: ° n Ormatlon t eory prOVIdes non parametrlc ramewor Or COdIng
‘o- Plugi plug-in estimation (i.e., no bias correction), PT, QE, BUB, and . | . . .
5 = = = Plugin NSB (see text). A and C and B and D report results using
£ 1.2 1 — QE realistically simulated single-cell and population cortical spike ° Optl ma COdIng SChemeS depend Strong |y On nOISe aSSU mptlons
- ins, ively (see main text). H H H H
S:R - = =BUB trains, respectively
|t 08l 1SR Bu and optimization constraints
= = = NSB . . .
Eg;-n--—-— 06 E ; o @ In data analysis biases can be substantial
0.8 -
04tE4"
6 8 10 12 6 8 10 12

Logz(trialslstim)

Common technique for In,: shuffle correction [Panzeri et al., 2007]
See also: [Paninski, 2003, Nemenman et al., 2002]

31/35 32/35



References | References li

[W Brady, N. and Field, D. J. (2000).
Local contrast in natural images: normalisation and coding efficiency.
Perception, 29(9):1041-1055.

@ Cover, T. M. and Thomas, J. A. (1991).
Elements of information theory.
Wiley, New York.

@ de Ruyter van Steveninck, R. R. and Laughlin, S. B. (1996).
The rate of information transfer at graded-potential synapses.
Nature, 379:642—645.

@ de Ruyter van Steveninck, R. R., Lewen, G. D., Strong, S. P., Koberle, R., and Bialek, W.

(1997).
Reproducibility and variability in neural spike trains.
Science, 275:1805—-1809.

3 Laughlin, S. B. (1981).
A simple coding procedure enhances a neuron’s information capacity.
Zeitschrift fir Naturforschung, 36:910-912.

[§ Linsker, R. (1988).
Self-organization in a perceptual network.
Computer, 21(3):105-117.

References IlI

[§ Stein, R. B. (1967).
The information capacity of nerve cells using a frequency code.
Biophys J, 7:797-826.

@ Strong, S. P., Koberle, R., de Ruyter van Steveninck, R. R., and Bialek, W. (1998).
Entropy and Information in Neural Spike Trains.
Phys Rev Lett, 80:197-200.

[l Warzecha, A. K. and Egelhaaf, M. (1999).
Variability in spike trains during constant and dynamic stimulation.
Science, 283(5409):1927-1930.

33/35

35/35

[

D & & W

Mackay, D. and McCullogh, W. S. (1952).
The limiting information capacity of neuronal link.
Bull Math Biophys, 14:127—135.

Nemenman, |., Shafee, F., and Bialek, W. (2002).
Entropy and Inference, Revisited.
nips, 14.

Paninski, L. (2003).
Estimation of Entropy and Mutual Information.
Neural Comp., 15:1191-1258.

Panzeri, S., Senatore, R., Montemurro, M. A., and Petersen, R. S. (2007).
Correcting for the sampling bias problem in spike train information measures.
J Neurophysiol, 98(3):1064—1072.

Rieke, F., Warland, D., de Ruyter van Steveninck, R., and Bialek, W. (1996).
Spikes: Exploring the neural code.
MIT Press, Cambridge.

Shannon, C. E. and Weaver, W. (1949).
The mathematical theory of communication.
Univeristy of lllinois Press, lllinois.

34/35



