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Outline

First, second and higher-order statistics
Generative models, recognition models
Sparse Coding
Independent Components Analysis
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Sensory information is highly redundant

[Figure: Matthias Bethge]
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and higher order correlations are relevant

[Figure: Matthias Bethge]

note Fourier transform of the autocorrelation function is equal to the power spectral density (Wiener-Khinchin theorem)
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Redundancy Reduction

(Barlow, 1961; Attneave 1954)

Natural images are redundant in that there exist statistical
dependencies amongst pixel values in space and time
In order to make efficient use of resources, the visual system
should reduce redundancy by removing statistical dependencies
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The visual system

[Figure from Matthias Bethge]

6 / 44



The visual system

[Figure from Matthias Bethge]
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Natural Image Statistics and Efficient Coding

First-order statistics
Intensity/contrast histograms⇒ e.g. histogram equalization

Second-order statistics
Autocorrelation function (1/f 2 power spectrum)
Decorrelation/whitening

Higher-order statistics
orientation, phase spectrum (systematically model higher orders)
Projection pursuit, sparse coding (find useful projections)
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Image synthesis: First-order statistics

[Figure: Olshausen, 2005]

Log-normal distribution of intensities.
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Image synthesis: Second-order statistics

[Figure: Olshausen, 2005]

Describe as correlated Gaussian statistics, or equivalently, power
spectrum.
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Higher-order statistics

[Figure: Olshausen, 2005]
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Importance of phase information

[Hyvärinen et al., 2009]
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Generative models, recognition models

(§10.1, Dayan and Abbott)
How is sensory information encoded to support higher level tasks?
Has to be based on the statistical structure of sensory information.
Causal models: find the causes that give rise to observed stimuli.
Generative models: reconstruct stimuli based on causes, model
can fill in based on statistics.
Allows the brain to generate appropriate actions (motor outputs)
based on causes.
A stronger constraint than optimal encoding alone (although it
should still be optimal).
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Generative models, recognition models

(§10.1, Dayan and Abbott)

Left: observations. Middle: poor model; 2 latent causes (prior
distribution) but wrong generating distribution given causes. Right:
good model.
In image processing context one would want, e.g. A are cars, B are
faces. They would explain the image, and could generate images with
an appropriate generating distribution.
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Generative models, recognition models

Hidden (latent) variables h (causes) that explain
visible variables u (e.g. image)
Generative model

p(u|G) =
∑

h

p(u|h,G)p(h|G)

Recognition model

p(h|u,G) =
p(u|h,G)p(h|G)

p(u|G)

Matching p(u|G) to the actual density p(u). Maximize the log
likelihood L(G) = 〈log p(u|G)〉p(u)
Train parameters G of the model using EM
(expectation-maximization)
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Examples of generative models

(§10.1, Dayan and Abbott)

Mixtures of Gaussians
Factor analysis, PCA
Sparse Coding
Independent Components Analysis
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Sparse Coding

Area V1 is highly overcomplete. V1 : LGN ≈ 25:1 (in cat)
Firing rate distribution is typically exponential (i.e. sparse)
Experimental evidence for sparse coding in insects, zebra finch,
mouse, rabbit, rat, macaque monkey, human
[Olshausen and Field, 2004]

Activity of a macaque IT cell in response to video images [Figure: Dayan and Abbott, 2001]
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Sparse Coding

Distributions that are close to zero most of the time but
occasionally far from 0 are called sparse
Sparse distributions are more likely than Gaussians to generate
values near to zero, and also far from zero (heavy tailed)

kurtosis =

∫
p(x)(x − x)4dx

(
[∫

p(x)(x − x)2dx
]2 − 3

Gaussian has kurtosis 0, positive k implies sparse distributions
(super-Gaussian, leptokurtotic)
Kurtosis is sensitive to outliers (i.e. it is not robust). See HHH §6.2
for other measures of sparsity

18 / 44



Skewed distributions

p(h) = exp(g(h))
exponential: g(h) = −|h|
Cauchy: g(h) = − log(1 + h2)
Gaussian: g(h) = −h2/2 [Figure: Dayan and Abbott, 2001]
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The sparse coding model

Single component model for image: u = gh.
Find g so that sparseness maximal, while 〈h〉 = 0, 〈h2〉 = 1. Multiple
components:

u = Gh + n

Minimize [Olshausen and Field, 1996]
E = [reconstruction error]− λ[sparseness]

Factorial: p(h) =
∏

i p(hi)

Sparse: p(hi) ∝ exp(g(hi)) (non-Gaussian)
Laplacian: g(h) = −α|h|
Cauchy: g(h) = − log(β2 + h2)

n is a noise term
Goal: find set of basis functions G such that the coefficients h are
as sparse and statistically independent as possible
See D and A pp 378-383, and HHH §13.1.1-13.1.4
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Recognition step

Suppose G is given. For given image, what is h?
For g(h) is Cauchy distribution, p(h|u,G) is difficult to compute
exactly
The overcomplete model is not invertible

p(h|u) =
p(u|h)p(h)

p(u)

Olshausen and Field (1996) used MAP approximation. As p(u)
does not depend on h, we can find h by maximising:

log p(h|u) = log(p(u|h)) + log(p(h))
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Recognition step

We assume a sparse and independent prior p(h), so

log p(h) =

Nh∑
a=1

g(ha)

Assuming Gaussian noise n ∼ N(0, σ2I), p(u|h) is drawn from a
Gaussian distribution at u−Gh and variance σ2:

log p(h|u,G) = − 1
2σ2 |u−Gh|2 +

Nh∑
a=1

g(ha) + const
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Recognition step

At maximum (differentiate w.r.t. to h)

Nh∑
b=1

1
σ2 [u−Gĥ]bGba + g′(ĥa) = 0

or
1
σ2 GT [u−Gĥ] + g′(ĥ) = 0
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To solve this equation, follow dynamics

τh
dha

dt
=

1
σ2

Nh∑
b=1

[u−Gh]bGba + g′(ha)

Neural network interpretation (notation, v = h) [Figure: Dayan and Abbott, 2001]

Dynamics does gradient ascent on log posterior.
A combination of feed forward excitation, lateral inhibition and
relaxation of neural firing rates.
Process is guaranteed only to find a local (not global) maximum
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Learning of the model

Now we have h, we can compare
Log likelihood L(G) = 〈log p(u|G)〉. Learning rule:

∆G ∝ ∂L
∂G

Basically linear regression (mean-square error cost)

∆G = ε(u−Gĥ)ĥT

Small values of h can be balanced by scaling up G. Hence
impose constraint on

∑
b G2

ba for each cause a to encourage the
variances of each ha to be approximately equal
It is common to whiten the inputs before learning (so that 〈u〉 = 0
and 〈uuT 〉 = I), to force the network to find structure beyond
second order
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[Figure: Dayan and Abbott (2001), after Olshausen and Field (1997)]
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Projective Fields and Receptive Fields

Projective field for ha is Gba for all b values
Note resemblance to simple cells in V1
Receptive fields: includes network interaction.
Outputs of network are sparser than feedforward input, or pixel
values
Comparison with physiology: spatial-frequency bandwidth,
orientation bandwidth
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Overcomplete: 200 basis functions from 12× 12 patches [Figure: Olshausen,
2005]

28 / 44



Gabor functions

Can be used to model the receptive fields.
A sinusoid modulated by a Gaussian envelope

1
2πσxσy

exp

(
− x2

2σ2
x
− y2

2σ2
y

)
cos(kx − φ)
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Image synthesis: sparse coding

[Figure: Olshausen, 2005]
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Spatio-temporal sparse coding

(Olshausen 2002)

u(t) =
M∑

m=1

nm∑
n=1

hm
i gm(t − τm

i ) + n(t)

G is now 3-dimensional, having time slices as well
Goal: find a set of space-time basis functions for representing
natural images such that the time-varying coefficients {hm

i } are as
sparse and statistically independent as possible over both space
and time.
200 bases, 12× 12× 7:
http://redwood.berkeley.edu/bruno/bfmovie/bfmovie.html

31 / 44



Sparse coding: limitations

Sparseness-enforcing non-linearity choice is arbitrary
Learning based on enforcing uncorrelated h is ad hoc
Unclear if p(h) is a proper prior distribution

Solution: a generative model which describes how the image was
generated from a transformation of the latent variables.
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ICA: Independent Components Analysis
[Bell and Sejnowski, 1995]

Linear network with output non-linearity h = Wu, yj = f (hj).
hj are statistically independent random variables.
hj are from a non-Gaussian distribution (as in sparse coding).
Find weight matrix maximizing information between u and y
No noise (cf. Linsker): I(u,y) = H(y)− H(y |u) = H(y)

H(y) = 〈log p(y)〉y = 〈log p(u)/ det J〉u

with Jji =
∂yj

∂ui
=
∂hj

∂ui

∂yj

∂hj
= wij

∏
j

f ′(hj)

(for a transformation, the PDF is multiplied by the absolute value of the
determinant of the transformation matrix to ensure nominalisation)
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ICA: Independent Components Analysis
[Bell and Sejnowski, 1995]

Mutual information:

H(y) = log det W + 〈
∑

j

logf ′(hj)〉+ const

Maximize entropy by producing a uniform distribution (histogram
equalization):

p(hi) = f ′(hi)

Choose f so that it encourages sparse p(h), e.g. 1/(1 + e−h).
For f (h) = 1/(1 + e−h):

dH(y)

dW
= (W T )−1 + (1− 2y)xT
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ICA: how does it differ from PCA?

The (symmetric) covariance matrix only constrains n(n − 1)/2
components.
Hence in a larger model (e.g. n2) the coefficients are not fully
constrained.
The more random variables are added, the more Gaussian. So we
look for the most non-Gaussian projection.
Often, but not always, this is most sparse projection.
Can use ICA to de-mix (e.g. blind source separation of sounds)

left: whitened by PCA; middle: 2 mixed independent components;
right: 2 independent compoennts
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ICA as generative model

Simplify sparse coding network, let G be square
u = Gh, W = G−1

p(u) = |detW |
Nh∏

a=1

ph([Wu]a)

Log likelihood

L(W ) =
〈∑

a

g([Wu]a) + log |detW |
〉

+ const

See Dayan and Abbott pp 384-386 [also HHH ch 7]
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Stochastic gradient ascent gives update rule

∆Wab = ε([W−1]ba + g′(ha)ub)

using ∂ log detW/∂Wab = [W−1]ba

Natural gradient update: multiply by W T W (which is positive
definite) to get

∆Wab = ε(Wab + g′(ha)[hT W ]b)
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ICA features

[Hyvärinen et al., 2009]
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ICA synthesised images

[Hyvärinen et al., 2009]

39 / 44



The visual system

[Figure from Matthias Bethge]
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Are Gabor patches what we want?

Dayan and Abbott (2001) p. 382 say:

In a generative model, projective fields are associated with the
causes underlying the visual images presented during training. The
fact that the causes extracted by the sparse coding model resem-
ble Gabor patches within the visual field is somewhat strange from
this perspective. It is difficult to conceive of images arising from
such low-level causes, instead of causes couched in terms of ob-
jects within images, for example. From the perspective of good rep-
resentation, causes more like objects and less like Gabor patches
would be more useful. To put this another way, although the prior
distribution over causes biased them toward mutual independence,
the causes produced by the recognition model in response to natural
images are not actually independent...
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This is due to the structure in images arising from more complex
objects than bars and gratings. It is unlikely that this higher-order
structure can be extracted by a model with only one set of causes.
It is more natural to think of causes in a hierarchical manner, with
causes at a higher level accounting for structure in the causes at a
lower level. The multiple representations in areas along the visual
pathway suggest such a hierarchical scheme, but the corresponding
models are still in the rudimentary stages of development.
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Summary

Both ICA and Sparse Coding lead to similar RFs, and sparse
output for natural images.
Both give good description of V1 simple cell RFs, although not
perfectly [van Hateren and van der Schaaf, 1998] )
(and so do many other algorithms)
Different objectives:

ICA - maximize information
Sparse Coding - sparse reconstruction

What about deeper layers? See [Hyvärinen et al., 2009] for
discussion of these points.
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