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Outline

First, second and higher-order statistics
Generative models, recognition models
Sparse Coding
Independent Components Analysis
Convolutional Coding (temporal and spatio-temporal signals)
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Redundancy Reduction

(Barlow, 1961; Attneave 1954)

Natural images are redundant in that there exist statistical
dependencies amongst pixel values in space and time
In order to make efficient use of resources, the visual system
should reduce redundancy by removing statistical dependencies
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Natural Image Statistics and Efficient Coding

First-order statistics
Intensity/contrast histograms⇒ e.g. histogram equalization

Second-order statistics
Autocorrelation function (1/f 2 power spectrum)
Decorrelation/whitening

Higher-order statistics
orientation, phase spectrum
Projection pursuit/sparse coding
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Image synthesis: First-order statistics

[Figure: Olshausen, 2005]

Log-normal distribution of intensities
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Image synthesis: Second-order statistics

[Figure: Olshausen, 2005]

Describe as correlated Gaussian statistics, or equivalently, power
spectrum
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Higher-order statistics

[Figure: Olshausen, 2005]
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Generative models, recognition models

(§10.1, Dayan and Abbott)

Left: observations. Middle: prior. Right: good model
In image processing one would want, e.g. A are cars, B are faces.
They would explain the image.
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Generative models, recognition models

Hidden (latent) variables h (causes) that explain
visible variables u (e.g. image)
Generative model

p(u|G) =
∑

h

p(u|h,G)p(h|G)

Recognition model

p(h|u,G) =
p(u|h,G)p(h|G)

p(u|G)

Matching p(u|G) to the actual density p(u). Maximize the log
likelihood L(G) = 〈log p(u|G)〉p(u)
Train parameters G of the model using EM
(expectation-maximization)
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Examples of generative models

(§10.1, Dayan and Abbott)

Mixtures of Gaussians
Factor analysis, PCA
Sparse Coding
Independent Components Analysis
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Sparse Coding

Area V1 is highly overcomplete. V1 : LGN ≈ 25:1 (in cat)
Firing rate distribution is typically exponential (i.e. sparse)
Experimental evidence for sparse coding in insects, zebra finch,
mouse, rabbit, rat, macaque monkey, human
[Olshausen and Field, 2004]

Activity of a macaque IT cell in response to video images [Figure: Dayan and Abbott, 2001]
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Sparse Coding

Distributions that are close to zero most of the time but
occasionally far from 0 are called sparse
Sparse distributions are more likely than Gaussians to generate
values near to zero, and also far from zero (heavy tailed)

kurtosis =

∫
p(x)(x − x)4dx

(
[∫

p(x)(x − x)2dx
]2 − 3

Gaussian has kurtosis 0, positive k implies sparse distributions
(super-Gaussian, leptokurtotic)
Kurtosis is sensitive to outliers (i.e. it is not robust). See HHH §6.2
for other measures of sparsity
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The sparse coding model

Single component model for image: u = gh.
Find g so that sparseness maximal, while 〈h〉 = 0, 〈h2〉 = 1. Multiple
components:

u = Gh + n

Minimize [Olshausen and Field, 1996]
E = [reconstruction error]− λ[sparseness]

Factorial: p(h) =
∏

i p(hi)

Sparse: p(hi) ∝ exp(g(hi)) (non-Gaussian)
Laplacian: g(h) = −α|h|
Cauchy: g(h) = − log(β2 + h2)

n ∼ N(0, σ2I)
Goal: find set of basis functions G such that the coefficients h are
as sparse and statistically independent as possible
See D and A pp 378-383, and HHH §13.1.1-13.1.4
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Recognition step

Suppose G is given. For given image, what is h?
For g(h) corresponding to the Cauchy distribution, p(h|u,G) is
difficult to compute exactly
Olshausen and Field (1996) used MAP approximation

log p(h|u,G) = − 1
2σ2 |u−Gh|2 +

Nh∑

a=1

g(ha) + const

At maximum (differentiate w.r.t. to h)

Nh∑

b=1

1
σ2 [u−Gĥ]bGba + g′(ĥa) = 0

or
1
σ2 GT [u−Gĥ] + g′(ĥ) = 0
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To solve this equation, follow dynamics

τh
dha

dt
=

1
σ2

Nh∑

b=1

[u−Gh]bGba + g′(ha)

Neural network interpretation (notation, v = h) Figure: Dayan and Abbott, 2001]

Dynamics does gradient ascent on log posterior.
Note inhibitory lateral term
Process is guaranteed only to find a local (not global) maximum
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Learning of the model

Now we have h, we can compare
Log likelihood L(G) = 〈log p(u|G)〉. Learning rule:

∆G ∝ ∂L
∂G

Basically linear regression (mean-square error cost)

∆G = ε(u−Gĥ)ĥT

Small values of h can be balanced by scaling up G. Hence
impose constraint on

∑
b G2

ba for each cause a to encourage the
variances of each ha to be approximately equal
It is common to whiten the inputs before learning (so that 〈u〉 = 0
and 〈uuT 〉 = I), to force the network to find structure beyond
second order
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[Figure: Dayan and Abbott (2001), after Olshausen and Field (1997)]

17 / 34

Projective Fields and Receptive Fields

Projective field for ha is Gba for all b values
Note resemblance to simple cells in V1
Receptive fields: includes network interaction.
Outputs of network are sparser than feedforward input, or pixel
values
Comparison with physiology: spatial-frequency bandwidth,
orientation bandwidth
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Overcomplete: 200 basis functions from 12× 12 patches [Figure: Olshausen,
2005]
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Gabor functions

Can be used to model the receptive fields.
A sinusoid modulated by a Gaussian envelope

1
2πσxσy

exp

(
− x2

2σ2
x
− y2

2σ2
y

)
cos(kx − φ)
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Image synthesis: sparse coding

[Figure: Olshausen, 2005]
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ICA: Independent Components Analysis

H(h1,h2) = H(h1) + H(h2)− I(h1,h2)

Maximal entropy typically if I(h1,h2) = 0, i.e.
P(h1,h2) = P(h1)P(h2)

The more random variables are added, the more Gaussian. So
look for the most non-Gaussian projection
Often, but not always, this is most sparse projection.
Can use ICA to de-mix (e.g. blind source separation of sounds)
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ICA derivation, [Bell and Sejnowski, 1995]

Linear network with output non-linearity v = Wu, yj = f (hj).
Find weight matrix maximizing information between u and y
No noise (cf. Linsker), so I(u,y) = H(y)− H(y |u) = H(y)
H(y) = 〈log p(y)〉y = 〈log p(u)/ det J〉u with
Jji =

∂yj
∂ui

=
∂hj
∂ui

∂yj
∂hj

= wij
∏

j f ′(hj)

H(y) = log det W + 〈∑j logf ′(hj)〉+ const
Maximize entropy by producing a uniform distribution (histogram
equalization: p(hi) = f ′(hi)). Choose f so that it encourages
sparse p(h), e.g. 1/(1 + e−h).
det W helps to insure independent components
For f (h) = 1/(1 + e−h), dH(y)/dW = (W T )−1 + (1− 2y)xT
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ICA: Independent Components Analysis

Derivation as generative model
Simplify sparse coding network, let G be square
u = Gh, W = G−1

p(u) = |detW |
Nh∏

a=1

ph([Wu]a)

note Jacobian term
Log likelihood

L(W ) =
〈∑

a

g([Wu]a) + log |detW |
〉

+ const

See Dayan and Abbott pp 384-386 [also HHH ch 7]
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Stochastic gradient ascent gives update rule

∆Wab = ε([W−1]ba + g′(ha)ub)

using ∂ log detW/∂Wab = [W−1]ba

Natural gradient update: multiply by W T W (which is positive
definite) to get

∆Wab = ε(Wab + g′(ha)[hT W ]b)

For image patches, again Gabor-like RFs are obtained
In the ICA case PFs and RFs can be readily computed
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Beyond Patches

“Convolutional Coding” (Smith and Lewicki, 2005)
For a time series, we don’t want to chop the signal up into
arbitrary-length blocks and code those separately. Use the model

u(t) =
M∑

m=1

nm∑

i=1

hm
i gm(t − τm

i ) + n(t)

τm
i and hm

i are the temporal position and coefficient of the i th
instance of basis function gm

Notice this basis is M-times overcomplete
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Want a sparse representation
A signal is represented in terms of a set of discrete temporal
events called a spike code, displayed as a spikegram
Smith and Lewicki (2005) use matching pursuit (Mallat and Zhang,
1993) for inference
Basis functions are gammatones (gamma modulated sinusoids),
but can also be learned
Zeiler et al (2010) use a similar idea to decompose images into
sparse layers of feature activations. They used a Laplace prior on
the h’s.

27 / 34

[Figure: Smith and Lewicki, NIPS 2004]
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Spatio-temporal sparse coding

(Olshausen 2002)

u(t) =
M∑

m=1

nm∑

n=1

hm
i gm(t − τm

i ) + n(t)

Goal: find a set of space-time basis functions for representing
natural images such that the time-varying coefficients {hm

i } are as
sparse and statistically independent as possible over both space
and time.
animate -resize 783x393 bfmovie.gif
(200 bases, 12× 12× 7)
http://redwood.berkeley.edu/bruno/bfmovie/bfmovie.html
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Are Gabor patches what we want?

Dayan and Abbott (2001) p. 382 say:

In a generative model, projective fields are associated with the
causes underlying the visual images presented during training. The
fact that the causes extracted by the sparse coding model resemble
Gabor patches within the visual field is somewhat strange from this
perspective. It is difficult to conceive of images arising from such
low-level causes, instead of causes couched in terms of objects
within images, for example. From the perspective of good
representation, causes more like objects and less like Gabor
patches would be more useful. To put this another way, although
the prior distribution over causes biased them toward mutual
independence, the causes produced by the recognition model in
response to natural images are not actually independent...

30 / 34

This is due to the structure in images arising from more complex
objects than bars and gratings. It is unlikely that this higher-order
structure can be extracted by a model with only one set of causes.
It is more natural to think of causes in a hierarchical manner, with
causes at a higher level accounting for structure in the causes at a
lower level. The multiple representations in areas along the visual
pathway suggest such a hierarchical scheme, but the
corresponding models are still in the rudimentary stages of
development.
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Summary

Both ICA and Sparse Coding lead to similar RFs, and sparse
output for natural images.
Both give good description of V1 simple cell RFs, although not
perfectly [van Hateren and van der Schaaf, 1998] )
(And so do many other algorhithms [Stein & Gerstner, preprint])
Differences

ICA: number of inputs = number of outputs. Sparse Coding:
over-complete
Objectives: ICA - maximize information. Sparse Coding - sparse
reconstruction

What about deeper layers? See [Hyvärinen et al., 2009] for
discussion of these points.
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