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From stimulus to behaviour
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output
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The brain as a computer

Sensory input

Motor

output
Brain

Information processing to extract features and generate outputs

Statistical inference
Physical implementation irrelevant, possible to replicate in silico?
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The neural code

Sensory input

Motor

output

Encoding: Prediction of neural response to a given stimulus:
P(R|S)

Decoding:
Given response, what was the stimulus: P(S|R)
Prosthetics: given firing pattern, what will be the motor output:
P(M|R)
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Understanding the neural code is like building a dictionary.
Translate from outside world (sensory stimulus or motor action) to
internal neural representation
Translate from neural representation to outside world
Like in real dictionaries, there are both one-to-many and
many-to-one entries in the dictionary
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Encoding: Stimulus-response relation

Predict response R to stimulus S. Black box approach.
This is a supervised learning problem, but:

Stimulus S can be synaptic input or sensory stimulus.
Responses are noisy and unreliable: Use probabilities.
Typically many input (and sometimes output) dimensions
Reponses are non-linear1

Assume non-linearity is weak. Make series expansion?
Or, impose a parametric non-linear model with few parameters

Need to assume causality and stationarity (system remains the
same). This excludes adaptation!

1Linear means: r(αs1 + βs2) = αr(s1) + βr(s2) for all α, β.
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Response: Spikes and rates

Response consists of spikes. Spikes are (largely) stochastic. Compute
rates by trial-to-trial average and hope that system is stationary and
noise is really noise.

Often, we try to predict R, rather than predict the spikes.
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Paradigm: Early Visual Pathways

[Figure: Dayan and Abbott, 2001, after Nicholls et al, 1992]
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Retinal/LGN cell response types

On-centre off-surround Off-centre on-surround
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Mach bands
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V1 cell response types (Hubel & Wiesel)

Odd Even

Simple cells, modelled by Gabor functions
Also complex cells, and spatio-temporal receptive fields
Higher areas
Other pathways (e.g. auditory)
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Not all cells are so simple...

Intermediate sensory areas (eg. IT) have face selective neurons. In
the limbic system, neurons appear even more specialised
[Quiroga et al., 2005].
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Not all cells are so simple...

In higher areas the receptive field (RF) is not purely sensory. Example:
pre-frontal cells that are task dependent [Wallis et al., 2001]
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Model complexity

linear

Gaussian

Biophysical models

Hodgkin Huxley

realism

tractability

To study neural encoding, we need a model. There is an inevitable
trade-off between realism and complexity.
Simple models: normative theories
Detailed models: how implemented in the brain

15 / 47



From stimulus to response
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What is the correct P(R|S, θ), where θ is a model parameter?
Strategy: Maximise the likelihood P(R|S, θ)
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General linear model (GLM)
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We assume a Poisson model. For N trials, we write the likelihood

P(R|S, θ) =
N∏

i=1

P(ri |si , θ)

=
N∏

i=1

1
ri !

(θsi)
ri e−θsi
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Model likelihood
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P(R|S, θ) =
N∏

i=1

P(ri |si , θ)

=
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i=1

1
ri !

(θsi)
ri e−θsi

has a maximum close to 2.
18 / 47



log-likelihood
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In practice, we use the logarithm

logP(R|S, θ) = log
N∏

i=1

P(ri |si , θ)

=
N∑
i

ri log θ − θsi + C

Terms in C does not depend on θ, so can be ignored.
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log-likelihood
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To find the maximum, differentiate:

∂ logP(R|S, θ)
∂θ
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log-likelihood
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Find the maximum:

logP(R|S, θ) =
N∑
i

ri log θ − θsi + C

∂ logP(R|S, θ)
∂θ

=
∑

i

ri

θ
−
∑

i

si
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log-likelihood
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Find the maximum:

∂ logP(R|S, θ)
∂θ

=
∑

i

ri

θ
−
∑

i

si

θ̂ =

∑
ri∑
si

In this example I obtain θ̂ = 1.92, close to the true value θ = 2.
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Remarks

The predicted rate can be <0.
In biology, unlike physics, there is no obvious small parameter that
justifies neglecting higher orders. Rectification requires infinite
orders, for instance. Check the accuracy of the approximation post
hoc.

Averaging and ergodicity
〈r〉 formally means an average over many realizations over the
random variables of the system (both stimuli and internal state).
This definition is good to remember when conceptual problems
occur.
An ergodic system visits all realizations if one waits long enough.
That means one can measure from a system long enough, true
averages can be obtained.
This however requires stationarity, internal states are not allowed
to change.
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A more realistic response
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A more realistic response
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This requires a non-linear transformation r(s) ∼ Poisson(f (θs)).
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Neural responses depend on the stimulus history

Introducing a linear temporal kernel k(t) with
r(t) = Poisson(f (

∫
dt ′s(t ′)k(t − t ′)) ).
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Poisson Generalised Linear Model (also GLM!)

[Pillow et al., 2005]

r(t) = Poisson(f (
∫

dt ′s(t ′)k(t − t ′) )
Linear: spatial and temporal filter kernel k
Non-linear function giving output spike probability:
rectification, saturation
Poisson spikes pspike(t) = λ(t) (noisy)
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Fitting a linear model
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r(t) = Gaussian(
∫

dt ′s(t ′)k(t − t ′))
This has closed form MLE: k̂ = (ST S)−1ST R
Data comes from model with exponential nonlinearity. The model
recovers the kernel well, but cannot predict the rates.
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Spike triggered average (STA)

Spike times ti , r(t) =
∑
δ(t − ti)

g1(τ) =
1
σ2 〈r(t)s(t − τ)〉 = 1

σ2

∑
ti s(ti − τ)
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Linear models for spiking neurons

Application on H1 neuron [Rieke et al., 1996]. Prediction (solid), and
actual firing rate (dashed). Prediction captures the slow modulations,
but not faster structure. This is often the case.
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Fitting a non-linear model
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Poisson GLM log-likelihood has no closed form MLE:

logP(R|S, θ) =
∑

i

ri log f (k ∗ si)−
∑

i

f (k ∗ si)

Use numerical minimisation of the neg. log-likelihood
(scipy.optimize.fmin or fminsearch in Matlab) This recovers the kernel
and rates correctly.
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Fitting non-linear models

Poisson GLM log-likelihood:

logP(R|S, θ) =
∑

i

ri log f (k ∗ si)−
∑

i

f (k ∗ si)

Bernoulli GLM log-likelihood:

logP(R|S, θ) =
∑

i

ri log f (k ∗ si) +
∑

i

(1− ri) log(1− f (k ∗ si))

For f (x) = 1/(1 + exp(−x)), this is logistic regression.
When f is convex (log(f ) is concave) in parameters, e.g. f (x) = [x ]+, or
f (x) = exp(x), then logL is concave, hence a global maximum exists.
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Regularization
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Figure: Over-fitting: Left: The stars are the data points. Although the dashed
line might fit the data better, it is over-fitted. It is likely to perform worse on
new data. Instead the solid line appears a more reasonable model. Right:
When you over-fit, the error on the training data decreases, but the error on
new data increases. Ideally both errors are minimal.
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Regularization
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Fits with many parameters/short data typically require
regularization to prevent over-fitting
Regularization: punish fluctuations (smooth prior, ridge
regression)
k̂ = (ST S + λI)−1ST r
Regulariser λ has to be set by hand
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Poisson GLM results

[Chichilnisky, 2001]
Colors are the kernels for the different RGB channels
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Spatio-temporal kernels

[Dayan and Abbott, 2002]

Kernel can also be in spatio-temporal domain.
This V1 kernel does not respond to static stimulus,
but will respond to a moving grating
([Dayan and Abbott, 2002]§2.4 for more motion detectors)
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Integrate and fire model

[Pillow et al., 2005]

Parameters are the k and h kernels
h can include reset and refractoriness
For standard I&F: h(t) = 1

R (VT − Vreset)δ(t)
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[Pillow et al., 2005] Fig 2
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[Pillow et al., 2005] Fig 3
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Poisson GLM with spike feedback

[Weber and Pillow, 2017]
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Spike feedback allows modelling neuron types

[Weber and Pillow, 2017]
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Even more complicated models

A retina + ganglion cell model with multiple adaptation stages
[van Hateren et al., 2002]

But how to fit the parameters?

42 / 47



Network models

Generalization to networks.
Unlikely to have data from all
neurons
Predict of cross-neuron spike
patterns and correlations
Correlations are important for
decoding (coming lectures)
Estimate ’functional coupling’,
O(N × N) parameters
Uses small set of basis functions
for kernels [Pillow et al., 2008]
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Network models

Note uncoupled case still correlations due to RF overlap, but less
sharp. [Pillow et al., 2008]
Unclear however if the IF model would perform better here than the
Poisson GLM.

44 / 47



Summary

Predicting neural responses
In order of decreasing generality

Linear models: simple, exact inference, but miss essential aspects
of neural physiology
Note higher orders may be captured by Wiener kernels, see
Dayan & Abbott, chapter 2. Require more data to fit.
Poisson GLM model: fewer parameters, spiking output, but lacks
precise spike timing
More neurally inspired models (I&F, GLM with spike feedback):
good spike timing, but hard to fit, require careful regularization
Biophyical models: in principle very precise, but in practice
unwieldy
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