
Neural Information Processing: 2008-2009

Assignment 1

School of Informatics, University of Edinburgh

Instructor: Mark van Rossum

16th February 2009

Remember that plagiarism is a university o�ence. Please read

the policy at http://www.inf.ed.ac.uk/admin/ITO/DivisionalGuidelinesPlagiarism.html
.

Practical information

You should produce a digital document for your assignment answers (e.g.
with latex) and submit this electronically using the submit command on a
DICE machine. The format is e.g.

submit msc nip 1 nipasst1.pdf

You can check the status of your submissions with the show_submissions

command. NOTE: postscript or pdf formats are acceptable, other formats
are not. Make sure that the �le you submit prints ok on the DICE system,
in particular when you produced it on a non-Unix machine.

Late submissions:
Late submissions will receive a zero mark. Only evidence for illness or

other serious reasons can prevent this at the discretion of the instructor. See

http://www.inf.ed.ac.uk/teaching/years/msc/courseguide08.html\#exam

The handout �Introduction to matlab� available from the PMR web-
page may be helpful if you are not very familiar with matlab. Recall that
the current �gure window can be saved as an encapsulated postscript �le
myplot.eps using the command print -deps2 myplot.eps.
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LNP models with refractoriness

In this assignment we analyse LNP models of neurons. Instead of using real
data, the neuron that we try to model is an integrate-and-�re model, the
code of which is on the website. The input of the neuron is a one dimensional
temporal stimulus. The output is the spike train.

In LNP models the probability of a spike in a time interval between t and
t + ∆t is given by pspike(t) = f(K ? s), where K ? s is the convolution of
the stimulus with a to be �tted kernel, and f() is a non-linearity. We a use
rectifying non-linearity with adjustable threshold f(x) = x− θ for x > θ and
f(x) = 0 otherwise. In theory the timebin ∆t → 0, but in practice we uses
a �nite value (1ms) as otherwise the problem is ill-posed.

In the lectures we used the cross-correlation between a white Gaussian
stimulus and the response to determine the kernel. Here we use that for
certain classes of the non-linearity, the optimal kernel can be found by max-
imising the log-likelihood. This is worked out in [Paninski, 2004] (paper on
course website). Study section 1,2 and 6 of this paper.

Given a small enough time bin, the probability for a spike is pspike(t) =
f(K ? s), and thus the probability pno spike(t) = 1 − f(K ? s). This leads to
the log-likelihood given by the last equation on p. 245.

Question 1: Generate data using the integrate-and-�re code. Numerically
�nd the optimal kernel that maximises the log-likelihood (last equation
on p. 245) by varying the kernel elements. Use a timebin of 1ms and
kernel length of about 10 time bins. Include one additional variable to
be optimised that sets the threshold.
Plot the kernel found and comment on its shape.
Note: 1) You can use the Octave/Matlab function 'fminunc' to do mul-
tidimensional optimisation Take a reasonable initial condition for K.
2) You will not only need to restrict f to be between 0 and 1, but because
of the logs the values 0 and 1 are also problematic. Recitify f such that
it cannot reach those values.

Next, we include a refractory e�ect in the model. See section 6 of the paper.

Question 2: Derive the one before last equation on page 253, in a discrete
time formulation (note, there is a typo in this equation...) assuming
very small timebins such that log(1 − f) ≈ f .
Also derive an equation for r in the discrete time formulation without
making this approximation.

Question 3: Use the one before last equation on p.253 to �nd the (time-
discretized) refractory function r. Use about 20 1ms timebins.
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Plot it and comment on its shape. How is it possible to see a refractory
e�ect, while the integrate-and-�re neuron does not have a refractory
period built in?
Note, the integrate-and-�re simulation script creates an array with In-
terspike Intervals, and an array with the time since the last spike. These
can be helpful.

Question 4: Improve the model parameters by alternating �nding the ker-
nel K and determining r a few times (see bottom of p.254). Report
the �nal values found for K and r.

Question 5: Plot the output of the LNP model averaged across a number of
trials. Compare the result of the predicted �ring rate with and without
refractoriness to the actual spike train.
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