and

$$L_{t}(t) = \frac{\alpha^{6} |\omega| \sqrt{\omega^{2} + 4\alpha^{2}}}{(\omega^{2} + \alpha^{2})^{4}} \cos(\omega t - \delta),$$

with

$$\delta = 8 \arctan\left(\frac{\omega}{\alpha}\right) + \arctan\left(\frac{2\alpha}{\omega}\right) - \pi$$
.

From these results, verify the selectivity curves in figures 2.15 and 2.16. In addition, plot δ as a function of ω .

- 7. Numerically compute the spatial part of the linear response of a simple cell with a separable space-time receptive field to a sinusoidal grating, as given by equation 2.31. Use a stimulus oriented with $\Theta = 0$. For the spatial receptive field kernel, use equation 2.27 with $\sigma_x = \sigma_y = 1^\circ$, $\phi = 0$, and $1/k = 0.5^\circ$. Plot L_s as a function of *K* taking $\Phi = 0$ and A = 50. This determines the spatial frequency selectivity of the cell. What is its preferred spatial frequency? Plot L_s as a function of Φ taking $1/K = 0.5^\circ$ and A = 50. This determines the spatial phase selectivity of the cell. What is its preferred spatial phase?
- 8. Consider a complex cell with the spatial part of its response given by $L_1^2 + L_2^2$, where L_1 and L_2 are linear responses determined by equation 2.31 with kernels given by equation 2.27 with $\sigma_x = \sigma_y = 1^\circ$, and $1/k = 0.5^\circ$; and with $\phi = 0$ for L_1 and $\phi = -\pi/2$ for L_2 . Use a stimulus oriented with $\Theta = 0$. Compute and plot $L_1^2 + L_2^2$ as a function of *K* taking $\Phi = 0$ and A = 5. This determines the spatial frequency selectivity of the cell. Compute and plot $L_1^2 + L_2^2$ as a function of Φ taking $1/K = 0.5^\circ$ and A = 5. This determines the spatial phase selectivity of the cell. Does the spatial phase selectivity match what you expect for a complex cell?
- 9. Consider the linear temporal response for a simple or complex cell given by equation 2.32 with a temporal kernel given by equation 2.29 with $1/\alpha = 15$ ms. Compute and plot $L_t(t)$ for $\omega = 6\pi/s$. This determines the temporal response of the simple cell. Do not plot the negative part of $L_t(t)$ because the cell cannot fire at a negative rate. Compute and plot $L_t^2(t)$ for $\omega = 6\pi/s$. This determines the temporal response of a complex cell. What are the differences between the temporal responses of the simple and complex cells?
- 10. Compute the response of a model simple cell with a separable spacetime receptive field to a moving grating

$$s(x, y, t) = \cos(Kx - \omega t).$$

For D_s , use equation 2.27 with $\sigma_x = \sigma_y = 1^\circ$, $\phi = 0$, and $1/k = 0.5^\circ$. For D_t , use equation 2.29 with $1/\alpha = 15$ ms. Compute the linear estimate of the response given by equation 2.24 and assume that the

6