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Part I

Spatial properties of receptive fields in visual cortex
1 Aims

• Understand the properties of Gabor filters and the responses to sinusoidal grating stimuli

• Explore the properties of simple and complex cells in the visual cortex

• Understand the notions of spatial frequency, phase, and orientation tuning

2 Theoretical Background
The Gabor function1 is a linear filter often used to approximate the spatial receptive field (RF) of simple cells in the
primary visual cortex. It has been shown that the elementary components extracted using Independent Component
Analysis (ICA) on natural images look a lot like Gabor filters or simple cell RFs2. On the other hand, models based
on Gabor-like filters are far from accounting for the total variance observed in experimental data3.

Mathematically, a Gabor filter is the result of multiplying a two-dimensional Gaussian function with a sinusoidal
function. To get an intuition for this, think of looking at a sinusoidal function through a 2D-Gaussian-shaped
window. What you would expect to see would resemble Figure 1.

The Gabor function is given by:
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Although this looks complicated, don’t be discouraged. The first part of the equation simply defines the 2D-
Gaussian function5, which is characterized by σx and σy, the extent of the function in the x and y directions,
respectively. The second part is determined by the parameters k, the preferred spatial frequency of the filter6, and
ϕ, the preferred spatial phase of the filter7.

1Named after the Hungarian Nobel laureate, Dennis Gabor.
2Check (Bell and Sejnowski, Vision Res, 1997) and (van Hateren and Ruderman, Proc Biol Sci, 1998).
3For two recent examples, you can check (Stringer et al, bioRxiv, 2018) and (Cossell et al, Nature, 2015).
4This is for a vertically oriented Gabor function only, as the one shown in Figure 1.
5which is just a product of two 1D-Gaussian functions in the x and y directions.
6(how wide or narrow the bands in the signal/stimulus need to be to optimally excite the filter/cell)
7where the ON/OFF regions are located.
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Figure 1: A 2D Gabor filter. The central yellow area would be the region of positive response, whereas the blue
areas laterally would give negative responses.

During experimental recordings of visual neuron responses, the stimuli used are usually moving sinusoidal
gratings (so they vary both in space, in terms of light intensity, and time, in that they are moving). This is given
by:

s(x, y, t) = Acos(KxcosΘ +KysinΘ − Φ)cos(ωt)

where A is the contrast amplitude, K is the spatial frequency of the grating (how wide the bands are), Θ is its
orientation, Φ is the spatial phase, and ω is the temporal frequency (how quickly the gratings are moving). Here,
we will deal with the simple case of a static grating stimulus. You can imagine that we take ω = 0, so that the
time-dependent component of the equation drops out. This, for a specific value of K and a Θ = 0, would look like
Figure 2.

Figure 2: Sinusoidal grating.

To understand the response of a cell with a Gabor-like RF to a sinusoidal grating, you can think of the cell as
filtering the input with its Gabor function. Another way to put this would be to say that the cell is performing a
convolution of the input grating with its RF. And yet another way to think of it would be as the cell looking in
the input for a pattern similar to its RF structure. The more similar the input to the RF, the higher the response,
and vice versa. Based on the RF in Figure 1 and the grating in Figure 2, the response would look something like
Figure 38.

8Please look at the images and convince yourselves that the response makes sense.
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Figure 3: Response of Gabor-like RF to sinusoidal grating.

The linear spatial response is given by:

Ls =
´
Ds(x, y)s(x, y)dxdy

which is essentially the form of the spatial convolution.
For additional information you can refer to Chapter 2 of Theoretical Neuroscience by Dayan and Abbott.

3 Modeling a simple cell’s RF and a grating stimulus
Your first task is to numerically model a 2D Gabor function and a sinusoidal grating stimulus, based on the equations
given above, in MATLAB. To start with you can simulate the stimulus with orientation Θ = 0, Φ = 0 and A = 50.
For the RF kernel, you can use σx = σy = 1◦, ϕ = 0, and 1/k = 0.5◦.

Hints:

• Useful functions (look up how they work in MATLAB’s documentation or online): surf, meshgrid

• You can write your own functions. This can be done if you create a new document in MATLAB and then
define your function with the general syntax:

function outputs = function_name(inputs)

input-dependent commands to execute

compute and return outputs

• It would helpful to compute the RF and the stimulus in separate functions, so as to prevent confusion.

• To check whether you’re on the correct path, compare what you get to the figures shown above.

4 Response of the cell to the stimulus
Now, compute the response of the cell to the stimulus. Does it look like you would expect?

5 Exploring the properties of the spatial RF
• Now, change the spatial frequency, K, of the grating stimulus. Plot the response, Ls, over a range of different

spatial frequency values. What is the preferred spatial frequency of the cell? Discuss your observations with
your neighbour. Which parameter of the RF do you think exerts the most influence on the resulting plot?9

9i.e. at which value the peak of the curve is observed
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• Then, plot Ls as a function of the spatial phase of the stimulus, Φ, taking 1/K = 0.5◦ as constant. What is
the preferred spatial phase of the cell?

• (Optional) Do the same for the parameter Θ, the orientation of the stimulus. You will get the orientation
tuning curve of the cell.

6 Modeling complex cells
Consider a complex cell with the spatial part of its response given by L2

1 +L2
2, where L1 and L2 are linear responses

determined by the equation for Ls. Let σx = σy = 1◦ and 1/k = 0.5◦ for both RFs; ϕ = 0 for L1 and ϕ = −π/2 for
L2; stimulus orientation is Θ = 0 again, but set A = 5.

• Compute the spatial frequency selectivity of the cell as in Section 5, taking Φ = 0.

• Compute the spatial phase selectivity of the cell, taking 1/K = 0.5◦.

Discuss your observations. How are the responses of the complex cell different from the ones of the simple cell?

7 (Optional)
Consider changing the orientation of the cell’s RF. How do its responses change then? Always check that the tuning
curves make intuitive sense.

8 (Optional)
Consider complex cells with more complex RF structure. How would you model those? (Combine with Section 7)

Part II

Temporal properties of receptive fields
(Continuing from previous lab)

Until now, we have only considered spatial responses of simple and complex cells to presentation of static
(non-moving) gratings. In reality, however, neurons don’t respond in this highly simplified fashion.

9 Temporal RFs
The effect of a given stimulus on the probability of spike generation is not constant but depends on its timing. The
shape of this dependency can be seen in Figure 4 and it is given by:

Dt(τ) = aexp(−ατ)( (ατ)5

5! − (ατ)7

7! )

where α is a constant that determines how quickly the temporal structure evolves, and τ is the “reverse” time,
meaning the time before the spike occurs. This biphasic pattern is not the only one possible, and monophasic or
triphasic response structures are also seen and can be modelled by simplifying or adding to the above function,
respectively.
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Figure 4: Temporal structure of a receptive field

• First model this structure of the temporal receptive field of the cell. You can take α = 1/15ms, but feel free
to explore what the effects of changing this parameter are.

• Next, look at the spatio-temporal receptive field of the simple cell, by combining its spatial Gabor-type RF
with its temporal RF. How would you expect the RF to look like? Visualize the RF and compare with your
expectations.10

• The linear temporal response of the cell will be given by Lt(t) =
´∞
0
Dt(τ)cos(ω(t − τ))dτ . Compute this

response for your cell, with angular frequency ω = 6π/s.

10 Moving gratings
Cells in primary visual cortex (V1) respond most strongly to moving gratings, not to static images. The linear
response estimate to a moving grating can be computed as just the product of the linear spatial and the temporal
responses we saw above:

L(t) = LsLt(t)
11

Now, compute the response to a moving grating with s(x, y, t) = cos(Kx− ωt). For Ds and Dt you can use the
same parameters we used initially in previous sections.

• First, plot the response as a function of time with 1/K = 1/k = 0.5◦, and ω = 8π/s.

• Then, plot the response as a function of K, with ω as a constant.

• Finally, plot the response as a function of ω, with K as a constant.

10It’s not very easy to visualize 4 dimensions, so it might make more sense to visualize the evolution of a slice along one of the two
spatial dimensions with time. Hint: You might find the function squeeze helpful. Possibly also slice.

11This is true for cells with a separable space-time receptive field, which is what we have been dealing with all along.
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