16 Parameterisation and Workload Characterisation

So far in this course we have been concentrating on constructing a good representation
of the system, appropriate for the investigation we wish to carry out. However it is not
just the physical system which is represented within the model but also the effect of the
environment upon the system. The most obvious influence of the environment upon the
system is to produce work for the system to do. Therefore it is just as important to have
a good representation of the workload of the system as to have a good representation of
the system itself. Indeed performance measures are not, in general, absolute for a given
system: performance is predicted on the basis of a given workload. This was reflected in
lecture note 14 when validation of the input parameters was given equal importance with
validation of the assumptions used within the behaviour of the model. Finding suitable
and /or realistic values for input parameters is often termed workload characterisation.

There have been well-documented problems arising from badly parameterised models.
The Hubble Space Telescope was rigorously simulated prior to its launch, as a cheaper
alternative to testing. However, once positioned it was found that it could not produce
a sharp image because the main mirror was badly flawed. The error was traced to the
erroneous input data used in the simulations. Some corrective optics have now been added
to the telescope in space (at a cost much higher than ground-based testing of the mirror),
but the telescope will never perform as well as planned.

16.1 Parameterisation

Parameterisation is the process of assigning values to variables within a model in order
to ensure that it is as accurate as feasible or appropriate. In a simulation model as
well as the actual values to be used, there will be some consideration of the appropriate
distribution to be used for generating the values. It is important that we consider the
availability of data to assist in parameterising our models from the outset of model design
and construction. For example, the level of abstraction at which work is represented
must correspond to the level of abstraction at which the system is represented; i.e. since
values must eventually be assigned to all input parameters, it would be a waste of effort
to develop a very detailed model if there is not data available from which to construct
a similarly detailed workload characterisation. Conversely, there is no need to invest a
lot of effort in sophisticated statistical analysis of workload data to parameterise a crude
model which is only intended to give rough estimates.

The first step is to choose which parameters to include in the model. As usual this
will be influenced by the objectives of the study, and by consideration of what is likely
to affect performance. If we examine the workload of a system it is likely to have many
different characteristics, such as inter-arrival time of jobs, type of job, resource required
per job, or size of job. However not all of these will have an impact on the performance of
a system. For example, if we are modelling a router, within a communication network, at
which the packet size does not affect the packet forwarding time then this characteristic
of the workload (packets) does not need to be represented.

In the models we have considered during the course we have usually chosen the param-
eters implicitly at the same time as choosing the appropriate level of abstraction, and we
have generally assumed a homogeneous workload, i.e. that all jobs or customers within the



123

system behave identically. Assigning values to parameters has also been simple within our
models as they have not been based on real systems. However in practice a considerable
part of the effort of a modelling study might be devoted to choosing appropriate values
for input parameters.

Of course the model will also contain parameters which represent aspects of the system
behaviour. Many of these will be static parameters which contain information about the
system configuration. For existing systems these are often available from published mate-
rials (manuals, specification documents, webpages etc.). In contrast dynamic parameters
usually characterise information about the working system which must be extracted or
predicted from records produced during system operation. Moreover, the actual parame-
ter used in a model may not directly match what is measured, but may need to be derived
from static and dynamic measures.

For example, in a PEPA model of an application program, access to memory is repre-
sented as a single activity, with time delay t,,,. Direct measurement of this time on a
real machine, however, could be problematic because the detailed steps of the memory
hierarchy are not typically observable. However it is easy to see that the expression

tawg = Bte + (1 — R)tp,

represents the variable, where ¢, is the time to access cache and t,, is the time to access
main memory, whereas h is the hit ratio. The values of ¢, and t,, will be available from
the manufacturer’s specification, and only A must be derived from measurements.

16.2 Measurement and Monitoring

Most approaches to measurement gathering are based on some notion of event. An event
is a pre-defined change in system state—dependent on the metric being measured—which
triggers the recording of data. Example events might be memory references, disk accesses
or network communication operations.

The measures or metrics that a performance analyst might want to record can be
classified as follows:

Event-count metrics For this class of metrics, what is being measured is quite simply
the number of occurrences of some type of event. Examples might be the number
of cache misses, or the number of disk I/O requests made by a program.

Secondary-event metrics Here the occurrence of an event stimulates the recording of
some other system parameters which are used to define the metric of interest. For
example, if we are interested in the number of messages in a buffer, the occurrence
of an enqueue event or a dequeue event will stimulate the recording of the current
queue length.

Profile These are not so directly related to individual events, but aim to build a complete
picture of the overall behaviour of a program or system by an aggregate measure.
In this case, a wide variety of events may be used to initiate the recording of data.

Dynamic information about the operation of a system under a workload can sometimes
be extracted from the information recorded for general purposes such as accounting and



124

logging. However, in general the information required for performance analysis is more
sophisticated and requires specific monitoring and measurement of the system.

Software performance monitors analyse the behaviour of the system during operation
and write records describing the resource usage and the performance status of the sys-
tem. For example, at specified intervals, queue lengths or device state indicators may be
sampled and the results written to the record. Alternatively, certain events which are
considered to be significant (such as swapping a page) may be documented in the record.
In general the volume and form of the data recorded by software monitoring means that
it is not possible to use it directly to parameterise the model. Instead it must be pro-
cessed and analysed to produce suitable summaries. Most software monitors will include
a reporting component which will undertake at least the initial stages of this task.

Hardware monitors are also available for some systems, and have the advantage of
being “external” to the system under observation: they do not perturb system operation.
However, in general the type of information which they can record is less detailed and so
favour a homogeneous view of workload.

Some commonly occurring subsystems, such as databases, have given rise to specialised
application software monitors. This is necessary because the subsystem has a certain
amount of autonomy from the host operating system which makes access to its internal
behaviour difficult.

There are four basic strategies for collecting measurement data. Each has advantages
and disadvantages, and in particular the analyst should be aware of the extent to which
the chosen strategy perturbs the system under observation.

Event-driven This strategy is best-suited to event-count metrics and secondary-event
metrics for which the event frequency is low. Every occurrence of the event causes
data to be recorded. For example if the desired metric is the number of page faults
that occur in the execution of a program, the performance analyst can modify the
page-fault-handling routine in the operating system to increment a counter whenever
the routine is entered. An additional mechanism must also be provided to dump
the contents of the counter when the program finishes execution.

This strategy has the advantage that the monitoring overhead is only incurred when
the event of interest occurs. However if the frequency of the event of interest is high
the overall perturbation of the behaviour of the system will be substantial.

Tracing This is essentially an enhanced version of the above strategy in which in addition
to recording simple measures at each event, details of system state are also recorded
so that each event can be identified. Thus in the example above, for each page
fault we would record the address which caused the fault. This increases the time
overhead of the strategy and can, additionally, lead to storage problems when the
event of interest is frequent.

Sampling This is a general statistical measurement technique whereby a subset of the
members of a population being examined is selected at random. It assumes that
since the subset is chosen at random, its characteristics will approximate those of
the total population.

In practical terms this means that at fixed time intervals a portion of the system
state, necessary for calculating the metric of interest, is recorded. In this case the



125

overhead incurred is independent of the event frequency and is instead a function
of the sampling frequency. The sampling frequency will depend on the resolution
needed to capture the events of interest, i.e. if the event happens only rarely far more
samples are likely to be needed. Furthermore, each run of a sampling-based exper-
iment is likely to produce a different result since the samples occur asynchronously
with respect to the system’s execution. Nevertheless, while the exact behaviour may
differ, the statistical behaviour should remain approximately the same.

Indirect An indirect strategy must be used for measures which are not directly mea-
surable. The general approach is to define an alternative metric from which the
metric of choice can be deduced or derived. In these cases the appropriate metric
and measurement strategy will often need to be defined on an ad hoc basis and will
depend on the ingenuity and creativity of the analyst.

16.3 Workload characterisation

Workload characterisation is the process of selecting the workload or workloads on which
to base the performance study. Difficult questions arise even in considering an existing
computing environment: What constitutes a “typical” workload? How should a mea-
surement interval, or time window, be selected? Should data from several measurement
intervals be averaged? These uncertainties are compounded in considering an environ-
ment that cannot be measured directly, for example in contemplating the movement of an
existing workload to a new system, or the introduction of a new workload to an existing
system. This problem is exacerbated by users who will often change their usage patterns
dependent on the service available.

The workload has to be broken down into workload components. These are the signifi-
cantly different tasks the system may be required to undertake. The choice of workload
components can have significant impact on the results of a performance study. For ex-
ample, if the packets in two networks are generally a mixture of two sizes—short and
long—the workload to compare the networks should consist of short and long packet
sizes. Using the wrong workload components will lead to inaccurate conclusions.

In most of the models we have considered in the course there has been only one workload
component but most systems have many more. For example, a workstation in an academic
environment might need to address all the following workload components: compilers,
editors, file utilities, communication, scientific computation, graphics, basic services, text
processing, and more. However for most performance studies, based on the objective of
the studies we can abstract details of the workload components down to a minimal set. For
example, if we wished to study the impact of scientific computation on communication we
might consider a model with just three workload components: scientific computation,
communication and other. If we were developing a queueing network model each of these
workload components would be represented a distinct class of customers. For each class
we would then need to know the service demand of customers of that class at each of
the resources in the system, as well as the number of such customers (for a closed class)
or the arrival rate (for an open class). If we were developing a GSPN model each class
of customer would be represented in distinct cycles within the model (only closed classes
can be represented in a GSPN) competing for the resources via synchronisations (cf. the



126

reader-writer model).

Often the resources we are interested in within our systems are quite low level, e.g. CPU
and disks, whereas our workload components are expressed in terms of user applications.
We must therefore derive the devolved workload. This involves viewing the system as a
series of layers each built one on top of another. A layer offers services to the layer above
and generates workload to the layer below. The devolved workload is then the amount of
workload requested from the lower layer in order to satisfy one unit of workload from the
layer above. For example, this technique might be used to derive the typical usage of a
communication gateway involved in one ftp connection.

Most systems display varying behaviour over time although the time periods may differ.
For example, a web server which presents pages offering advice on filling tax returns will
exhibit varying patterns of use over a year, whilst most human-centric systems, such as a
bank ATM, will have a workload which varies throughout each 24 hour period. In most
cases, the time window which exhibits peak use is chosen for performance studies on the
understanding that performance will only improve during the rest of the cycle.

When the objective of the performance study is to predict the behaviour of a system
under a future workload, direct measurement of current workload characteristics is merely
the starting point. The parameter values in the model will be based on a workload model
which is itself predicted from the measured data. There are two major ways in which this
prediction can be carried out.

Trend Analysis If historical workload measurements exist, the current workload mea-
surements may be considered in relation to these and examined for trends. Mowving
averages and exponential smoothing are both techniques for extrapolating future val-
ues from a series. In this way the expected future values of the workload parameters
are predicted.

Key Value Indicators Users or system managers often find it easier to predict the
future in terms of their business than in terms of the service demands or load
intensity of the resulting computer system workload. The key value indicator (KVTI)
is a quantifiable business variable such as the number of customers. The current
workload is then related to the current value of the KVI and the users’ predicted
future computing needs in terms of KVI are then related back to give future workload
estimates.

As explained in the previous section monitoring software or hardware can produce
substantial amounts of information about the workload on the system. Parameterisation
should have identified the key characteristics of that data for this model and modelling
study. There are then various techniques which can be used to extract the necessary values
from the data. For Markovian models, where we have already made an assumption that
all delays within the model will be exponentially distributed, the analysis will generally
be less sophisticated than what would be used to find input values for a simulation model.
Commonly used techniques include the following:

Averaging Based on the sample data the mean value is calculated. In addition to the
mean, the median and the mode are also sometimes useful ways of characterising a
particular parameter as a single value.



127

Finding variability Variability is sometimes represented by the coefficient of variation
which is the ratio of the standard deviation within a sample to the mean. For
simulation models, this can then be used to fit a distribution to the sample points.
The corresponding parameter in the model will then be drawn from that distribution
with appropriate parameters.

Single parameter histograms A histogram shows the relative frequencies of various
values, or range of values, of a parameter. Some simulation packages allow this
sample data to be stored and used to provide varying values for the corresponding
parameter during model execution via a look-up table.

Multi-parameter histograms Single parameter histograms fail to capture any corre-
lation which may exist between different parameters of the workload. For example,
short jobs may create a lower number of disk I/O requests and take a smaller amount
of CPU time than long jobs. However, considering the parameters number of disk
I/0 requests and CPU time separately might allow jobs in the model with short
CPU time and a high number of disk I/O requests—something not generally possi-
ble in reality. Considering multiple parameters at once attempts to overcome this
problem. In practice correlated input parameters should usually be represented as
functions of a single parameter.

Cluster analysis Most large computer systems have workloads consisting of several
identifiable components or classes as in the packet size example above. There are
two key goals when the observations of the system are analysed to identify these
classes. Clearly, customers or jobs within a class should exhibit similar patterns of
behaviour within the system. But also, if the objectives of the performance study
require separate performance predictions for different workload components, they
must be represented in different classes.

Cluster analysis is the principal way in which components or classes are identified within
workload data. This technique is described in detail below.

16.3.1 Cluster Analysis

The data about a system generated by software monitoring may contain several thou-
sand “user” profiles. The objective of cluster analysis is to reduce this data to a few
key characteristics, identifying the different types of users in the system. Users who
share characteristics are gathered together into clusters; eventually each cluster will be
represented by one class in the model. The steps of cluster analysis are as follows:
Sample the workload data.

Select important workload parameters.

Transform parameters, if necessary.

Remove outliers.

Select a distance measure.

Perform clustering,.

NSe O W

Interpret results.



128

8. Change parameters, or number of clusters, and repeat steps 3 to 6.

9. Select representative components from each cluster.

If there are n parameters of interest for each sample point (user observation) we can
imagine that the selected sample points are mapped into n-dimensional space; for each
sample point its position along the ¢ axis represents its value for the i¢th parameter.
The objective of cluster analysis is to form groups of sample points which are related
with respect to their parameter values. In other words points which are close together
spatially. The variance between points can be measured as their distance apart so the
objective becomes to identify groups such that the variance within groups is minimised
while the variance between groups is maximised.

Hierarchical approaches to cluster analysis are often taken and these can be agglom-
erative or divisive, depending on whether they start with as many different clusters as
sample points and successively merge them, or whether they start with a single cluster
containing all sample points which is successively split.

Jane Hillston (jeh@inf.ed.ac.uk). September 19, 2003.



