
14 Model Validation and Verification

14.1 Introduction

Whatever modelling paradigm or solution technique is being used, the performance mea-
sures extracted from a model will only have some bearing on the real system represented
if the model is a good representation of the system. Of course, what constitutes a good
model is subjective, but from a performance modelling point of view our criteria for judg-
ing the goodness of models will be based on how accurately measures extracted from the
model correspond to the measures which would be obtained from the represented system.

By its nature a model is more abstract than the system it represents (even a simulation
model). Viewed in one way, abstraction, and assumptions we make to achieve it, eliminate
unnecessary detail and allow us to focus on the elements within the system which are
important from a performance point of view; viewed in another way, this abstraction
process introduces inaccuracy. Some degree of inaccuracy may be necessary, desirable
even, to make the model solution tractable and/or efficient. Inevitably some assumptions
must be made about the system in order to construct the model. However, having made
such assumptions we must expect to put some effort into answering questions about the
goodness of our model. There are two steps to judging how good a model is with respect to
the system. We must ascertain whether the model implements the assumptions correctly
(model verification) and whether the assumptions which have been made are reasonable
with respect to the real system (model validation).

We have already seen examples of both model verification and model validation in
models which we have considered earlier in the course. For example, in the Markov process
model of the PC-LAN we carried out a walk-through of the simplified model with just
two nodes in the network to check the characterisation of state which we were using. This
was model verification. The level of abstraction which we had first chosen did not allow
us to represent the behaviour of the system and make the assumptions about memoryless
behaviour. The walk-through allowed us to detect that we needed to distinguish states
more finely, leading to a modification of the model. The SPNP modelling package allows
us to include assertions within the program representing a model. These assertions are
used to encode invariants about the behaviour of the system which we know should be
true at all times. For example, in the reader-writer system we were able to assert that
it should never be the case that a reader and a writer had access to the database at the
same time. This can be used for both model verification and model validation.

It is important to remember that validation does not imply verification, nor verifica-
tion imply validation. However, in practice, validation is often blended with verification,
especially when measurement data is available for the system being modelled. If a com-
parison of system measurements and model results suggests that the results produced by
the model are close to those obtained from the system, then the implemented model is as-
sumed to be both a verified implementation of the assumptions and a valid representation
of the system.



103

14.2 Model Verification

Verification is like debugging—it is intended to ensure that the model does what it is
intended to do. Models, especially simulation models, are often large computer programs.
Therefore all techniques that can help develop, debug or maintain large computer pro-
grams are also useful for models. For example, many authors advocate modularity and
top-down design. Since these are general software engineering techniques we will not
discuss them in detail here; modifications of such techniques to make them suitable for
modelling, and modelling-specific techniques are discussed below.

Antibugging Antibugging consists of including additional checks and outputs in a
model that may be used to capture bugs if they exist. These are features of the model
which do not have a role in representing the system, or even necessarily in calculating
performance measures. Their only role is to check the behaviour of the model.

A common form of antibugging is to maintain counters within a simulation model
which keep track of the number of entities which are generated and terminated during the
evolution of the model. For example, in a communication network simulation we might
keep track of the number of messages entering the network, the number successfully
delivered and the number lost. Then, at any time, the number of messages which have
entered should be equal to the number which have been delivered plus the number that
have been lost plus the number which are currently in transit.

In Markovian models it is not possible to maintain counters in this explicit way as
it would break the irreducibility assumption about the state space. However, it is still
sometimes possible to include antibugging structures within a Markovian model. For
example, an extra place could be included in a GSPN model into which a token was
inserted for each entity created in the model and a token was deleted for each entity
deleted. Care should be exercised in applying such techniques to ensure that you are not
creating state space explosion. The SPNP assertions can also be used for antibugging
since they allow a check to be made in each state of the model, as the state space is
constructed.

Structured walk-through/one-step analysis Explaining the model to another per-
son, or group of people, can make the modeller focus on different aspects of the model
and therefore discover problems with its current implementation. Even if the listeners
do not understand the details of the model, or the system, the developer may become
aware of bugs simply by studying the model carefully and trying to explain how it works.
Preparing documentation for a model can have a similar effect by making the modeller
look at the model from a different perspective.

In the absence of a willing audience the model developer should try to carry out the
same sort of step-by-step analysis of the model to convince himself or herself that it
behaves correctly. For a GSPN model this would amount to playing the token game; in
a queueing network, stepping through the possible customer transitions. Some modelling
packages provide support for doing this.

Simplified models It is sometimes possible to reduce the model to its minimal possible
behaviour. We have already seen examples of this when we considered the “multiproces-



104

sor” example with only one processor, to make sure that the interaction between the
processor and the common memory was correct, and when we considered the PC-LAN
with just two PCs. Similarly in a closed queueing network model we might consider the
model with only a single customer, or in a simulation model we might only instantiate
one entity of each type. Since one-step analysis can be extremely time consuming it is
often applied to a simplified model.

Of course, a model that works for simple cases is not guaranteed to work for more
complex cases; on the other hand, a model which does not work for simple cases will
certainly not work for more complex ones.

Deterministic models (simulation only) For simulation models the presence of ran-
dom variables can make it hard for the modeller to reason about the behaviour of a model
and check that it is as expected or required. Replacing random variables which govern
delays or scheduling with deterministic values may help the modeller to see whether the
model is behaving correctly. Only when we are satisfied that the behavioural represen-
tation of the entities is indeed correct should we introduce random variables to represent
inter-event times using continuous time distributions.

Note that this technique is only appropriate for simulation models—Markovian models
can only be solved with exponential distributions.

Tracing (simulation only) Trace outputs can be extremely useful in isolating incorrect
behaviour in a model, although in general other techniques will be used to identify the
presence of a bug in the first place. Since tracing causes considerable additional processing
overhead it should be used sparingly in all except the simplest models.

SimJava2 allows you to trace models in terms of specific events or entities, as well as a
default trace which will can be produced automatically. Default tracing can be switched on
and off using the method Sim system.set auto trace() which takes a boolean parame-
ter. The entity trace is produced when an entity includes sim trace commands. The first
parameter sets a notional level for the trace message and the level of tracing for any par-
ticular run is set in the model body using the method Sim system.set trace level(l)

where l is an integer used as a bit mask with respect to entity trace messages.

Event traces are produced using the method Sim system.track event(s)(). If a
single integer is passed as an argument events with that tag value are traced; if an array
of integers is passed (track events) events of all types listed will be traced.

The method Sim system.set trace detail(b1, b2, b3) which takes 3 boolean pa-
rameters, lets the modeller choose what form of tracing to have in a particular run. For
example Sim system.set trace detail(false, true, false) switches off the default
trace, switches on entity tracing and switches off event tracing. Note that tracing is very
expensive in terms of simulation time and the default is to have no tracing if none of
the tracing specific methods of Sim system are called. The model fragments in Figure 31
show a variant on the M/M/1 model with user defined tracing.



105

Animation (simulation only) From a verification perspective, animation is similar
to tracing but provides the information about the internal behaviour of the model in a
graphical form. Some modelling packages with graphical interfaces, like SimJava, provide
a dynamic display of model behaviour whilst the model is executing. In some systems the
display will represent high level information about the current value of the performance
measures of interest shown as dials or meters which change as the values change. The
SimJava animation view is rather low level, showing events moving around the system
capturing the interactions between entities. This low level view is particularly suited to
verification. Animation can take the form of automated one-step analysis, if the animation
facilities allow the view of the model to advance one event at a time. Graphical stochastic
Petri net and queueing network tools often provide a animated form of one-step analysis
in which tokens or customers can be seen moving around the network.

Handling the display as well as the evolution of the model slows down the simulation
considerably. As with tracing, animation is most useful for isolating an error once its
presence has been established.

Seed independence (simulation only) The seeds used for random number generation
in a simulation model should not significantly affect the final conclusion drawn from a
model, although there will be variation in sample points as seeds vary. If a model produces
widely varying results for different seed values it indicates that there is something wrong
within the model. Seed independence can be verified by running the simulation with
different seed values, something which is probably necessary in any case. In SimJava2 the
root seed value to be used in a run can be set explicitly; for example calling the method
Sim system.set seed(23533) sets the root seed to 23533. Sim system will still give each
separate distribution used in the simulation a distinct well-spaced seed.

Continuity testing At an abstract level all systems and models can be thought of as
generating a function from input values to output values, and in most cases we expect
that function to be continuous. In other words, in most cases, we do not anticipate that
a slight change in an input value will result in very large changes in the corresponding
output value.

Continuity testing consists of running a simulation model, or solving a Markovian
model, several times for slightly different values of input parameters. For any one pa-
rameter, a slight change in input should generally produce only a slight change in the
output. Any sudden changes in the output are taken to be an indication of a possible
error which should be investigated unless this is known behaviour of the system.

Degeneracy testing Degenerate cases for a model are those values of input parameters
which are at the extremes of the model’s intended range of representation. Degeneracy
testing consists of checking that the model works for the extreme values of system and
workload (input) parameters. Although extreme cases may not represent typical cases,
degeneracy testing can help the modeller to find bugs that would not otherwise have been
discovered.



106

Consistency testing For most models and systems it is reasonable to assume that
similarly loaded systems will exhibit similar characteristics, even if the arrangement of the
workload varies. Consistency tests are used to check that a model produces similar results
for input parameter values that have similar effects. For example, in a communication
network, two sources with an arrival rate of 100 packets per second each should cause
approximately the same level of traffic in the network as four sources with arrival rate of
50 packets per second each. If the model output shows a significant difference, either it
should be possible to explain the difference from more detailed knowledge of the system,
or the possibility of a modelling error should be investigated.

14.3 Model Validation

Validation is the task of demonstrating that the model is a reasonable representation of the
actual system: that it reproduces system behaviour with enough fidelity to satisfy analysis
objectives. Whereas model verification techniques are general the approach taken to model
validation is likely to be much more specific to the model, and system, in question. Indeed,
just as model development will be influenced by the objectives of the performance study,
so will model validation be. A model is usually developed to analyse a particular problem
and may therefore represent different parts of the system at different levels of abstraction.
As a result, the model may have different levels of validity for different parts of the system
across the full spectrum of system behaviour.

For most models there are three separate aspects which should be considered during
model validation:

• assumptions

• input parameter values and distributions

• output values and conclusions.

However, in practice it may be difficult to achieve such a full validation of the model,
especially if the system being modelled does not yet exist. In general, initial validation
attempts will concentrate on the output of the model, and only if that validation suggests
a problem will more detailed validation be undertaken.

Broadly speaking there are three approaches to model validation and any combination
of them may be applied as appropriate to the different aspects of a particular model.
These approaches are:

• expert intuition

• real system measurements

• theoretical results/analysis.

In addition, as suggested above, ad hoc validation techniques may be established for a
particular model and system.



107

Expert intuition Essentially using expert intuition to validate a model is similar to
the use of one-step analysis during model verification. Here, however, the examination of
the model should ideally be led by someone other than the modeller, an “expert” with
respect to the system, rather than with respect to the model. This might be the system
designer, service engineers or marketing staff, depending on the stage of the system within
its life-cycle.

Careful inspection of the model output, and model behaviour, will be assisted by one-
step analysis, tracing and animation, in the case of simulation models, and the full steady
state representation of the state space in the case of Markovian models. In either case,
a model may be fully instrumented, meaning that every possible performance measure
is extracted from the model for validation purposes regardless of the objectives of the
performance study.

Real system measurements Comparison with a real system is the most reliable and
preferred way to validate a simulation model. In practice, however, this is often infeasible
either because the real system does not exist or because the measurements would be too
expensive to carry out. Assumptions, input values, output values, workloads, configu-
rations and system behaviour should all be compared with those observed in the real
world. In the case of simulation models, when full measurement data is available it may
be possible to use trace-driven simulation to observe the model under exactly the same
conditions as the real system.

Theoretical results/analysis In the case of detailed Markovian models or simulation
models it is sometimes possible to use a more abstract representation of the system to
provide a crude validation of the model. In particular, if the results of an operational
analysis, based on the operational laws coincide with model output it may be taken as
evidence that the model behaves correctly.

Another possible use for the operational laws is to check consistency within a set of
results extracted from a simulation model. If a model is behaving correctly we would
expect the measures extracted during the evolution of a model to obey the operational
laws provided the usual assumptions hold. Failure of the operational laws would suggest
that further investigation into the detailed behaviour of the model was necessary. For
example, the general residence time law can provide us with a simple validation of the
model output values obtained for residence times at individual components if we know
their respective visit counts, jobs behave homogeneously and we expect the model to be
job flow balanced.

At slightly more detail a simulation model may also be validated by comparing its
output with a simple queueing network model of the same system, and conversely, (in
academic work) Markovian models are often validated by comparing their outcome with
that of a more detailed simulation model.

Validation of models against the results or behaviour of other models is a technique
which should be used with care as both may be invalid in the sense that they both may
not represent the behaviour of the real system accurately.

Another analytic approach is to determine invariants which must hold in every state
of the system. For example, these invariants might capture a mutual exclusion condition



108

or a conservation of work condition. Showing that the model always satisfies such an
invariant is one way of increasing confidence in the model, and providing support for its
validity. The assertions in SPNP do this, and we could imagine including similar checks
within an entity in a SimJava model. The disadvantage of such an approach is that it can
be computationally expensive to carry out the necessary checks regularly within a model.

Jane Hillston 〈jeh@inf.ed.ac.uk〉. September 19, 2003.



109

class Source extends Sim_entity {

............

public Source(String name) {

...........

}

public void body() {

int i = 0;

while (Sim_system.running()) {

sim_trace(1, "about to generate arrival " + (i++));

sim_schedule(enqueue, 0.0, 0);

sim_pause(src_hold.sample());

} } }

class Server extends Sim_entity {

............

public Server(String name) {

...........

}

public void body() {

Sim_event next = new Sim_event();

int i = 0;

while (Sim_system.running()) {

if (sim_waiting() > 0) {

sim_select(Sim_system.SIM_ANY, next);

} else {

sim_wait(next);

}

sim_process(svr_hold.sample());

sim_trace(2, "completed service of arrival " + (i++));

sim_completed(next);

} } }

class Queue_Trace {

public static void main(String args[]) {

Sim_system.initialise();

............

Sim_system.set_auto_trace(true);

Sim_system.set_trace_level(7);

Sim_system.track_event(0);

Sim_system.set_trace_detail(false, true, true);

Sim_system.run();

}

}

Figure 31: SimJava model demonstrating user-defined tracing (Queue Trace.java)


