1 Modelling and Simulation

1.1 Introduction

This course teaches various aspects of computer-aided modelling with an emphasis on the
performance evaluation of computer systems and communication networks. The perfor-
mance of a system influences its design, procurement and subsequent use. Performance
analysis may be carried out at any stage of that life-cycle. In general, the problem is to
achieve the highest possible performance given the constraints on the system. Typical
constraints might be the number of users, the bandwidth or the cost. Modelling and
simulation are methods which are commonly used by performance analysts to represent
constraints and optimise performance.

Many of the ideas of the course will be presented by examples; as well as computer
systems and communication networks, other dynamic systems such as manufacturing and
transport systems will sometimes be considered. With all the examples it will be as
important to consider the underlying concepts as the details of the example itself.

1.2 Models as tools

The term model conjures up a variety of images. We will use it to mean something which
represents a system in a form which allows us to make predictions about the behaviour
of the system. How accurate these predictions are will depend on the detail we invest
in the model. In some cases, when we only need an approximate or relative measure of
the behaviour of the system, a very crude model will suffice. When the answers obtained
from the model are crucial we will be prepared to expend more effort in developing our
model and the representation of the system will be less abstract. During the course
we will consider a range of modelling techniques from the very abstract, in which the
behaviour of the system is captured by a single equation, the so-called operational laws,
to the very detailed simulation models in which every aspect of the system’s behaviour
can be represented.

In all cases a model should be an abstraction of the system: an attempt to distill, from
the mass of details that is the system itself, exactly those aspects that are essential to the
system’s behaviour. Once a model has been defined through this abstraction process, it
can be parameterised to reflect any of the alternatives under study, and then evaluated
to determine its behaviour under this alternative. Using a model to investigate system
behaviour is less laborious and more flexible than direct experimentation, because the
model is an abstraction that avoids unnecessary detail.

There are many reasons why investigations into the behaviour of a system cannot be
carried out by direct experimentation on the system. At best experimentation will prob-
ably be disruptive, at worst, dangerous. For example, a system manager of a heavily
loaded file server is unlikely to allow experimentation, or even simple monitoring, because
the disruption to users will be too great. Systems such as nuclear reactor control sys-
tems or the London Underground control system are simply not safe to experiment with.
However, timely response may be just as critical as correctness within such systems.

Another problem with direct experimentation may be that the internal behaviour which
we wish to investigate may not be accessible in a working system. For example, in most



operating systems it is difficult to obtain the exact timing of instruction level events.
Experimentation, since it involves monitoring, is expensive (in terms of system resources)
and time consuming. It is also difficult to use the results of direct experimentation to
extrapolate to other scenarios of operation. For example, experimenting with one config-
uration of a communication network is unlikely to give us much insight into the expected
performance if another configuration is used. This leads us to one of the most compelling
reasons for using modelling instead of direct experimentation: it is often the case that the
system which we wish to study does not yet exist.

The idea that a design should be subjected to some analysis to ensure that the resulting
system will behave correctly is now widely accepted. Models are tools commonly used
for this purpose: for example the process algebra CCS may be used to check that an
implementation will satisfy conditions set out in a behavioural specification. Such models
are sometimes called qualitative models because all definite values are abstracted away.
In contrast, performance evaluation is concerned with ensuring that a system will satisfy
constraints on timely behaviour and efficient resource utilisation. These constraints are
sometimes expressed as performance requirements or a performance specification. These
performance models are sometimes called quantitative models—if we wish to extract quan-
titative information (estimates of real values such as response time or throughput) then
we must incorporate quantitative information in the model.

Throughout the course we will encounter a variety of modelling styles. The key notions
of the course will recur whichever modelling style we are using. These notions are that

e a model can be constructed to represent some aspect of the dynamic behaviour of
a system; and

e once constructed, such a model becomes a tool with which we can investigate the
behaviour of the system.

1.3 Discrete event systems

A common feature of all the systems and models which we will consider is that they are
discrete event systems. What this means is that our view of the system is characterised
by variables that take distinct values and which change at distinct times or events in the
system. For example, we might be interested in the number of nodes in a communication
network which are currently waiting to send a message (N say). This number will change
when one of two events occur: either a node, which was not previously waiting, generates
a message and is now waiting to send (N — N + 1), or a node, which was previously
waiting, successfully transmits its message (N — N — 1).

We will not consider continuous models. These are models of systems in which the
variables characterising the system are constantly changing. An example of such a model
would be the speed of a falling object or the drag experienced by a plane.

Of course, discrete systems and continuous systems are distinguished by the way in
which we view them as much as by inherent properties of the situation they represent. In
other words, for many systems the choice of whether to represent it as a discrete event or a
continuous system will depend on several factors including the objectives of the study, the
information available and the expertise of the modeller. However for some systems, such as



computers and communication networks, the discrete event representation is generally the
more natural one. One of our major tasks as modellers will be to choose the parameters
which characterise the system under study.

Discrete time discrete event models only consider the system at predetermined moments
in time, which are typically evenly spaced, eg. at each clock “tick”. State changes are
observed only at these moments, which are not necessarily the moment at which the events
themselves occur. Such models are often used to approximate systems with continuously
changing states. Continuous time discrete event models, consider the system at the time
of each event. Hence the time parameter in such models is conceptually continuous. At
levels of abstraction above the hardware clock these models are generally appropriate for
computer and communication systems.

1.4 Performance Evaluation

Performance evaluation is concerned with the description, analysis and optimisation of
the dynamic behaviour of computer and communication systems. This involves the inves-
tigation of the flow of data, and control information, within and between components of
a system. The aim is to understand the behaviour of the system and identify the aspects
of the system which are sensitive from a performance point of view. More specifically,
a performance analyst might be involved in any of the following tasks: specifying per-
formance requirements, evaluating design alternatives, comparing two or more systems,
determining the optimal value of a parameter (system tuning), finding the performance
bottleneck (bottleneck identification), characterising the load on the system (workload
characterisation), determining the number and sizes of components (capacity planning),
and predicting the performance at future loads (forecasting).

These tasks address problems which are regularly faced by organisations during the
life-time of a computer or communication system. For example, consider the following
scenarios:

Design and Implementation A car manufacturing company is designing and building
a computer-aided design system to allow thirty car designers simultaneous access to
a distributed database through graphical workstations. Early in the design phase,
fundamental decisions must be made on issues such as the database accessing mech-
anism and the process synchronisation and communication mechanism. The relative
merits of various mechanisms must be evaluated prior to implementation.

Evolution of the configuration and workload A stock exchange intends to begin
trading a new class of options. When this occurs, the exchange’s total volume of
options transactions is expected to increase by a factor of three. Adequate resources,
both computer and personnel, must be in place when the change is implemented.

We can use a variety of measures, or indices, to characterise the behaviour of the
system. Perhaps the most commonly used are response time, throughput and utilisation.
Each of these can be regarded as a random variable of the model. The response time is
an estimate of the time which elapses between the arrival of a request to the system and
the completion of the request by the system. Notice that this is quite a vague definition.
This is because response time is a vague notion which should be defined more precisely



in terms of the system and the goals of the study whenever it is used. Throughput is the
number of requests satisfied per unit time. In both these definitions “request” is used
as a general term which, again, should be made precise in the context of any particular
model. Utilisation is the percentage of time that a system or component spends in use,
as opposed to being idle.

Other measures of interest might be the total number of requests over a given time
period, the mean number of requests waiting, or the mean time a request spends waiting
while the system is otherwise occupied.

1.5 Probability Theory

Although computer systems by their very nature are deterministic systems the models
we will be considering will be stochastic. Loosely speaking, a stochastic model is one
in which behaviour is random. We use such models because the world that computers
interact with is by no means deterministic, but instead full of random behaviour. Also,
the stochastic nature of the models will allow us to consider typical or average behaviour
rather than particular behaviour. We will rely heavily on basic probability theory when
constructing and solving our models.

Probability theory deals with the analysis of events which are unpredictable when
viewed individually, but which exhibit some regularity and predictability when viewed
in large numbers. We are familiar with such ideas applied to tossing a coin or rolling a
die. Here the unpredictability of an individual outcome is due to the non-deterministic
nature of the situation. When we are considering a computer system the unpredictability
of an individual outcome is likely to arise because of our inability to measure or specify
the exact conditions under which the event occurs. This distinction, however, is largely
philosophical; probability theory is equally applicable to both these situations.

There are three axioms of probability theory:

1. There is a sample space, €2, which encompasses all possible observations or outcomes.

2. There is a collection of subsets of 2, denoted E, and termed events!; these subsets
are usually identified as sample points which satisfy some condition.

3. There is a probability mapping, Pr, from E to IR. Pr must satisfy three simple
conditions:
(a) For any event A, A € E, the mapping Pr is defined and satisfies 0 < Pr(A4) < 1.
(b) Pr(Q2) = 1.
(c) If A and B are mutually exclusive, that is, they contain no sample points in

common, then Pr(AU B) = Pr(A) + Pr(B).

If we consider a mobile phone antenna using frequency division multiplexing the sample
space is the complete set of observations. Example events might be that more than three
frequencies are in use or that a particular user is making use of the facility. These events
corresponds to subsets of the sample points.

'Note that this is a different use of the term “event” from discrete event system.



Various properties of probabilities can be derived from the axioms and simple set theory.
For example, the probability of the union of two events A and B which are not mutually
exclusive is Pr(AU B) = Pr(A) + Pr(B) — Pr(A N B). Similarly, the probability of the
complement of event A, denoted by —A, is Pr(—A) =1 — Pr(A).

1.5.1 Conditional Probabilities

If we know that some event has occurred then this may affect the probability that other
events have occurred. The conditional probability of A occurring, given that B has oc-
curred, is

Pr(AN B)

Pr(A | B) = =Pl

Example: In a communication network, there are two routes A and B, between a
particular pair of nodes which are chosen with equal probability. Message transmission
time along route A is 1 second and along route B is 3 seconds. However, the probability of
a transmission error is 0.2 on route A and 0.1 on route B. We wish to find the probability
of a message being transmitted correctly in 1 second.

Let us denote the event of a successful message transmission by C. We wish to calculate
the probability that a transmission takes route A and is successful, i.e. Pr(ANC). We
know the conditional probability that a transmission is successful, given that it took route
A, is Pr(C' | A) = 0.8 and the probability that route A is taken is Pr(A) = 0.5. So it
follows that Pr(ANC) =Pr(C | A) x Pr(A) = 0.8 x 0.5 = 0.4.

If A and B are mutually exclusive Pr(A | B) = 0. If B is a precondition for A, then
Pr(AN B) = Pr(A). Two events are independent if knowledge of the occurrence of one of
them tells us nothing about the probability of the other, i.e. Pr(A | B) = Pr(A). Thus,
when two events are independent, the probability of them both occurring is

Pr(AN B) = Pr(A) x Pr(B).

1.5.2 Random Variables and Probability Distributions

Often when we conduct an experiment or investigation we are interested in some number
associated with the experiment rather than the actual outcome. For example, if we
consider the mobile phone antenna again, we are likely to be interested in the average
number of frequencies in use rather than the details of each connection. Thus we naturally
construct a mapping from the observations we make of the actual interactions, the sample
space, to the value we are interested in. Such a function, from the sample space to the
real or natural numbers is a continuous or discrete random variable, respectively. We
are often interested in calculating, for each possible value, with what probability the
random variable takes that value. Conversely, knowing these probabilities gives us a lot
of information about the sample space modelled by the random variable.

When the random variable takes discrete values such as the natural numbers we asso-
ciate probabilities with the random variable in an intuitive way. That is, the probability



that a random variable X has the value v is equal to the probability of the union of all
events that lead to X = v.

Suppose that random variable X has values {z; | i« € I} and that for all i € I the
probability that X = x; is equal to p;. Then {p; | i € I} is the probability distribution of X.
This mapping from x; to p; is sometimes called the mass function. In the simple example
of rolling a fair die, the values of the random variable are clearly {1,2,3,4,5,6} and the
probability distribution is {1/6,1/6,1/6,1/6,1/6,1/6}. This is a uniform distribution.

The expectation of X is defined to be

E[X] = Za:z X Pj.

el

Informally, we can think of this as the average value that X will have. For rolling a fair
die this will be

(1x1/6)+(2x1/6)+ (3x1/6)+ (4x1/6)+ (5x1/6)+(6x1/6)=21/6=3.5

For some sample spaces, discrete values of random variables are not appropriate. For
example, if we are interested in the number of frequencies which are used each hour then
a discrete random variable is ideal. However, if we are interested in the duration of each
connection, the variable can take almost any non-negative value, so a continuous random
variable is appropriate.

For continuous random variables we can no longer assign a probability to each sample
point in a meaningful way. Instead we define the probability that the random variable
takes a value which is less than a given value. This is done by a distribution function?,
F. For a continuous random variable X the distribution function is defined as

F(x) =Pr(X <)

Probability distribution functions satisfy four conditions:

1. F(x1) < F(xg) if 27 < 9
2. F(
3. F(z) — 1l as x — o0;
4. F(

r) — 0 as © — —o0;

F(x) is continuous?.

The derivative of the distribution is known as the density function f(x),

flr) = D

It is convenient to regard the infinitesimal quantity f(z)dz as the probability that the
value of X lies in the interval (x,x + dz). The expectation of the continuous random
variable X is defined as

2Some authors call this the cumulative distribution function.
3Strictly, F(x) only needs to be right continuous, but we will assume that F(z) is continuous for all
the continuous random variables which we will encounter in this course.



BIX] = /OO o f (2)dz.

—00

The expectation of the sum of a number of random variables is the sum of their in-
dividual expectations. This is true even if the variables are dependent in some way. In
other words, for continuous random variables, X and Y, E[X + Y] = E[X]| + E[Y].

The expectation only gives us an idea of the average value assumed by a random
variable, not how much individual values may differ from this average. The wvariance,
Var(X), gives us an indication of the “spread” of values:

Var(X) = E[(X — E[X))?] = E[X?] — E[X]*.

1.5.3 Two important distributions

The most important continuous probability distribution for performance modelling pur-
poses is the (negative) exponential distribution which has the distribution function

Flz)=1—e™ 2>0 and density function flz) =pe™ x>0

The expectation of an exponential random variable with parameter p is 1/p and its
variance is 1/u2. This random variable is often used to denote the time which elapses
until some event occurs, such as the arrival of a task at a computer system, the arrival of
a bus at a bus-stop or the outbreak of war.

Example: Suppose that the time for which a computer system is up is an exponential
random variable with mean 20 days. What is the probability that the machine will stay
up for more than 40 days?

Let X denote the random variable representing the up-time of the machine. Then we
are interested in Pr(X > 40) = 1 — Pr(X < 40) (i.e. the distribution function evaluated
when z = 40 and p = 1/20):

Pr(X >40)=1— (1 —e20) = ¢2=0.135 to 3 significant figures

The exponential distribution function is closely related to a discrete random variable,
the Poisson distribution. This random variable takes values in the set {0,1,2,...} and
has the mass function

The expectation of a Poisson random variable with parameter p is also p. The Poisson
random variable arises frequently in computer and communication system modelling. It
is typically used as a counting variable, recording the number of events that occur in a
given period of time; for example, the number of messages transmitted in a communication
network node in one minute or the number of users arriving at a terminal in one hour. If
we observe a Poisson process with parameter p for some time period of length h then:

e the probability that one event occurs is ph + o(h).

f(r)

=0
h

4The notation o(h) denotes terms of small relative size; formally a function f is o(h) if %ir%

In practice, what this means is that these are terms which we can ignore when h is small.



e the probability that two or more events occur is o(h).

e the probability that no events occur is 1 — uh + o(h).

Thus if we observe a Poisson process for a infinitesimal time period dt the probability
that an event occurs is udt. If the occurrence of events is governed by a Poisson distri-
bution then the inter-event times are governed by an exponential distribution with the
same parameter, and vice versa. Therefore, if we know that the delay until an event is
exponentially distributed then the probability that it will occur in the infinitesimal time
interval of length dt, is udt.

The reason that the exponential distribution is used extensively in performance mod-
elling is because it has several attractive mathematical features. Here we will state those
properties without proof, but the proofs can be found in any textbook on stochastic
modelling, Markov processes or performance modelling.

e The exponential distribution is memoryless: if X is an exponentially distributed
random variable, then

Pr(X >t+s|X >t) =Pr(X > s) t>0,s>0

If X represents the waiting time until an event, this implies that knowing that ¢
time units have already elapsed without the event occuring does not give us any
additional information about when the event will occur—the distribution of the
further waiting time is the same as if no waiting time had already passed.

e If X; and X, are two exponentially distributed random variables, with parameters
A1 and A, respectively, and Y is defined to be their minimum, i.e. ¥ = min(X7y, X5),
then Y is also exponentially distributed, with parameter A; + Ay. This is sometimes
called the superposition property.

e Let X be an exponentially distributed random variable, with parameter A, repre-
senting time until an event. Suppose that the events are probabilistically divided
into two categories, with events belonging to stream A with probability ps and
belonging to stream B with probability pg = 1 — p4. Then stream A and stream
B are Poisson streams with parameters A x ps and A X pg respectively, and the
waiting times between events of category A and between events of category B are
exponentially distributed with parameters A x ps and \ X pg respectively. This is
sometimes called the decomposition property.

1.6 The rest of the course

The central theme of the course will be that a model, as well as being an abstract rep-
resentation of a system, is a tool which we can exploit to derive information about the
system. The more detail we invest in the model, the more sophisticated the information
we can extract from it. As the course progresses the models will become increasingly de-
tailed; the corresponding solution techniques will similarly become more complex, relying
on increasing levels of computer assistance.
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