

Machine Learning & Sensorimotor Control (Spring 2007)

Instructor: Dr. Sethu Vijayakumar

Homework 3

Due Date: April 10, 2006 (Tuesday)
Submission: JCMB 2107F

Instruction: Turn in short, precise and concise answers. Turn in all Matlab/C /C++
code (a synopsis of it will do if it is large sized) that is requested or that you used to
calculate the requested values. MATLAB must be used for Question 1.
Grading: Maximum marks are 100. This will be scaled to account for 20% of your
total course marks. No collaborations allowed. Homeworks are individual assignments
and any attempts at plagiarism will be viewed very seriously.

Problem 1 (Distal Learning Problem): 65 points

This assignment is about learning forward and inverse models with regression networks.
In Computational Neuroscience, people have been interested in modeling the behavior of
frogs for some time. Here, you are asked to help them to build a model about how a frog

can learn to catch its prey.
A simplified model of the frog is shown on
the left. The frog’s body rotation is given
by the angle θ , the head rotation by an
angle φ , and the length of the tongue
protrusion by the distance d. Thus, in order
to catch prey successfully, the frog has to
orient its head and body appropriately first,
and then the tongue has to lash out such
that the prey is caught.
First we want to learn a forward model of
the frog’s prey-catching behavior. The file
X.data contains 200 random input data
points (θ,φ,d), and the file T.data contains
the corresponding 200 output data (x, y).
Note that the output data are noisy. You are
asked to find an appropriate feedforward
neural network to model this data. You find
a “skeleton” MATLAB script in
nn_skeleton.m on the web page which you
can use and modify for the following
problems.

φ θ

d

x

y Tip of
Tongue

Machine Learning and Sensorimotor Control
Instructor: Dr. Sethu Vijayakumar [Homework 3 Page #2]

a) The MATLAB function to initialize a feedforward network is “newff”. The

“newff” function requires that you specify:
• the minimum and maximum values for each input,
• the number of layers in your network,
• the activation function in each layer,
• the number of units in each layer.
Make a choice for each of these points. Train the network using backpropagation
algorithms. MATLAB offers you the following choices in “newff”:
• traingd - Train feed-forward network with backpropagation.
• trainbfg - Train feed-forward network with quasi-Newton backpropagation.
• trainrp - Train feed-forward network with reslient backpropagation.
• trainlm - Train feed-forward network with Levenberg-Marquardt.
Additionally, “newff” allows you to specify whether you want to train without
momentum (“learngd”) or with momentum (“learngdm”).

Modify nn_skeleton.m to train your selected network. Try at least two of the
above algorithms and compare their learning results.
Generate a plot showing the decrease of the normalized mean-squared error as a
function of training epochs. [5+5 points]

Now the frog has to learn how to catch prey. For this purpose you need to learn an
inverse model of the frog’s prey-catching behavior. The inverse model takes as input
the target coordinates of the prey, (xd , yd) , and outputs an appropriate set of “motor
commands” (θ,φ,d) to reach the target. The file P.data contains a set of (xd , yd) data
that the frog should learn.
One possible way to learn the inverse model is the direct inverse modeling approach.
It just reverses the inputs and outputs of the forward model, i.e., T.data becomes the
inputs data set, and X.data the output data set.

b) Using the nn_skeleton.m script, train a neural network (with your favorite training

algorithm) to learn the direct inverse model by using the X.data and T.data data
sets as training data. Generate a plot of the normalized mean-squared error as a
function of training epochs. [10 points]

In order to assess the quality of the frog’s inverse model, use the function frog.m
from the web page to assess how well the frog is able to reach for a target (use “help
frog” in MATLAB after frog.m is downloaded into your current working directory).
Use P.data as input to your direct inverse network to generate motor commands for
these targets. “frog.m” allows to convert these commands to the coordinates in x,y-
space at which the frogs will actually snap.

Machine Learning and Sensorimotor Control
Instructor: Dr. Sethu Vijayakumar [Homework 3 Page #3]

c) Plot the P.data data superimposed with the actual x,y coordinates the frog snaps

at. What is the average absolute error of the frog’s prey catching behavior?
[10 points]

d) Assuming that the average fly is approximately 0.005-0.01 meters in diameter, do
you think the frog will have a chance to survive? [5 points]

e) Provide reasons (keywords suffice) why the direct inverse model network may be

an inadequate approach to learning the fog’s prey catching behavior. [5 points]

f) Briefly sketch an approach how the frog could learn to perform better. Give

reasons (keywords suffice) why your approach will perform better. [10 points]

g) Use your alternative method from point (f) and implement this method in
MATLAB. Provide a print-out of your MATLAB program, the learning curve of
the system displaying how the error in x,y-space decreases over the learning
epochs, and the average error of your method after learning has converged. Also,
plot the P.data data superimposed with the actual x,y coordinates the frog snaps
at. (Hint: The web-page contains a MATLAB function “frog_jac.m” which, given
an input vector (θ,φ,d) , returns the matrix of derivatives:

∂x
∂θ

∂x
∂φ

∂x
∂d

∂y
∂θ

∂y
∂φ

∂y
∂d

As MATLAB does not provide a function how to calculate the Jacobian of a
neural network, you can use this analytical function instead of the learned forward
model to obtain the Jacobian. With the help of the Jacobian you can transform
errors in distal space to proximal space. The errors in proximal space allows you
to create new targets in proximal space that can be used to train the inverse
model.) [15 points]:

Machine Learning and Sensorimotor Control
Instructor: Dr. Sethu Vijayakumar [Homework 3 Page #4]

Problem 2 (Min. Jerk Trajectory Planning): 35 points

This assignment is about planning kinematic trajectories based on certain optimization

criterion. I am in charge of a new robotic vision head
project. The manufacturer wants to finalize the
specifications of the motor and hence, require me to
tell them what the maximum velocity and maximum
acceleration they need to design each joints for. I know
that I will be implementing minimum jerk trajectory
plans on the robot (in order to make the movement
look smooth and nice!). I also know that the minimum
jerk trajectories can be realized if I plan the movement
of each joints as a fifth order spline (polynomial), i.e.,

5
5

4
4

3
3

2
210)(tbtbtbtbtbbt +++++=θ , where t refers

to the discreet time index and bi are constants.

Let us assume the following constants:
Start position = θs, End position= θf, Start time = 0,
End time = d, Amplitude of motion = a= (θf - θs).

(a) If we wanted to start a motion at zero velocity and zero acceleration and end also

with zero velocity and zero acceleration, find the maximum velocity and the
maximum acceleration at each joints in terms of the amplitude of motion=a and
the duration of the movement=d; if we were to stick to min. jerk trajectories.
[20 points]

(b) Plot the joint position, velocity and acceleration profiles for the head rotation
from zero to seventy-five degrees which is to be carried out in 0.4 sec. What
would be the max. velocity and max. accelerations that this joint would have to be
designed for. [15 points]

