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Action selection is a fundamental decision process for

us, and depends on the state of both our body and the

environment. Because signals in our sensory and motor

systems are corrupted by variability or noise, the

nervous system needs to estimate these states. To

select an optimal action these state estimates need to be

combined with knowledge of the potential costs or

rewards of different action outcomes. We review recent

studies that have investigated the mechanisms used by

the nervous system to solve such estimation and

decision problems, which show that human behaviour

is close to that predicted by Bayesian Decision Theory.

This theory defines optimal behaviour in a world

characterized by uncertainty, and provides a coherent

way of describing sensorimotor processes.
Introduction

The central nervous system (CNS) constantly sends motor
commands to our muscles. Determining the appropriate
motor command is fundamentally a decision process. At
each point in time we must select one particular motor
command from the set of possible motor commands. Two
components jointly define the decision problem: knowl-
edge of the state of the world (including our own body) and
knowledge of our objectives.

The sensory inputs of humans are plagued by noise
[1,2] which means that we will always have uncertainty
about our hand’s true location (Figure 1a). This uncer-
tainty depends on the modality of the sensory input: when
we use proprioception to locate our hand we may have
more uncertainty about its position compared to when we
can see it. Moreover, our muscles produce noisy outputs
[3,4] and when we quickly move to a target location
(shown as a red ! in Figure 1a) our final hand position
will typically deviate from the intended target. Even if our
sensors were perfect they would only tell us about the part
of the world that we can currently sense. This uncertainty
places the problem of estimating the state of the world and
the control of our motor system within a statistical
framework. Bayesian statistics [5–8] provides a systema-
tic way of solving problems in the presence of uncertainty
(see the online article by Griffiths and Yuille associated
with this issue: Supplementary material online).
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The approach of Bayesian statistics is characterized by
assigning probabilities to any degree of belief about the
state of the world (see also Conceptual Foundations
editorial by Chater, Tenenbaum and Yuille).

Bayesian statistics defines how new information should
be combined with prior beliefs and how information from
several modalities should be integrated. Bayesian decision
theory [9–11] defines how our beliefs should be combined
with our objectives to make optimal decisions. Under-
standing the way the CNS deals with uncertainty might
be key to understanding its normal mode of operation.

The cost of each movement (such as energy consumed)
must be weighed against the potential rewards that can be
obtained by moving. In the framework of decision theory a
utility function should quantify the overall desirability of
the outcome of a movement decision. We should choose a
movement so that as to maximize utility. Several recent
papers have addressed what functions people optimize
with their movements. Understanding what human
subjects try to optimize is a necessary step towards a
rational theory of movement selection.

The selection of a movement can be described as the
rational choice of the movement that maximizes utility
according to decision theory (see Box 1). This approach
thus asks why people behave the way they do. An
increasing number of laboratories have addressed this
question within this framework. Here we review recent
studies that find human movement performance to be
close to the predictions obtained from optimally combining
probability estimates with movement costs and rewards.
The approach has the potential to embed human
behaviour into a coherent mathematical framework.
Estimation using Bayes rule

We need to estimate the variables that are relevant for our
choice of movement. For example, when playing tennis we
may want to estimate where the ball will bounce. Because
vision does not provide perfect information about the ball’s
velocity there is uncertainty as to the bounce location.
However, if we know about the noise in our sensory system
then the sensory input can be used to compute the
likelihood – the probability of getting the particular
sensory inputs for different possible bounce locations
(shown in red in Figure 1b). We can combine this with
information that is available over repeated experience of
tennis: the position where the ball hits the ground is not
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Figure 1. Bayesian integration. (a) Perception and movement lead to uncertainty.

When we briefly look at our hand we cannot be certain where exactly it is. The

resulting uncertainty is sketched as the grey probability distribution around the

finger at upper left. When we only feel our hand without looking we might have

more uncertainty (below). Right: if we make a fast movement from a starting

position to a target we will not always hit the target (red X) but there will be some

probability distribution of endpoint position. (b) Example: The other player is hitting

the ball. Seeing the ball, we can estimate that it will land in the red region (with a

likelihood proportional to the saturation). We have prior knowledge that the ball is

likely to land in the green region (with a probability proportional to the saturation).

The black ellipses denote the posterior, the region where the Bayesian estimate

would predict the ball to land. (c) The experimental set-up in typical movement

psychophysics experiments. (d) Human subjects’ reliance on the prior as a function

of increasing perceptual uncertainty. (e) The inferred prior for the different

conditions and subjects. The actual distribution used in the experiment is shown

in red. (Data for (d) and (e) replotted from [12]).

Box 1. Decision theory

Decision theory quantifies how people should choose in the context

of a given utility function and some partial knowledge of the world.

The expected utility is defined as:

E Utility
� �

h
X

possible
outcomes

pðoutcomejactionÞUðoutcomeÞ

where p(outcomejaction) is the probability of an outcome given an

action and U(outcome) is the utility associated with this outcome.

According to decision theory people choose the action so as to

maximize the expected value of utility. Choosing according to this

criterion is the definition of choosing rationally. Within the frame-

work of economics, numerous problems have been described in

these terms. For example, people’s decision about the ratio of risky

to non-risky assets in their portfolio has been described in terms of

people having partial knowledge about their future earnings while

maximizing their future utility [59]. Companies’ decisions about

wages and employment of workers have been modelled in terms of

the company having partial information about workers’ ability and

maximizing profits [60]. Moreover, the decisions of the central bank

to increase or decrease interest rates has been modelled in terms of

optimally reducing the uncertainty about future inflation [61].

Economics tries to understand both how agents should optimally

behave when deciding under uncertainty and how they actually

behave in such cases. Bayesian decision making is the systematic

way of combining Bayesian estimates of probability with

utility functions.

Optimal control aims to solve similar problems where the decision

is not just happening at one point of time but a continuous output

(such as muscle force). The expected utility changes constantly

according to new information coming in. Solutions to this problem

typically use the notion of ‘cost-to-go’ the average integrated cost

from a current state to a target state.
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uniformly distributed over the court. For example the
bounce locations are likely to be concentrated within the
confines of the court and the distribution might be highly
peaked near the boundary lines where it is most difficult to
return the ball. This distribution of positions is called the
‘prior’ (sketched in green) and could be learned through
experience. Bayes Rule defines how to combine prior and
likelihood to make an optimal estimate of the bounce
location (see Box 2).

Bayesian integration in motor control

Bayes rule makes it clear that to perform optimally we
must combine prior knowledge of the statistic of the task
www.sciencedirect.com
with the likelihood obtained from the sensory input. In a
recent experiment [12], it was tested whether people use
such a strategy. Instead of the bounce location of a tennis
ball subjects had to estimate the position of a cursor
relative to their hand (Figure 1b). Subjects could use two
sources of information: The distribution of displacements
over the course of many trials (prior), as well as what they
see during the current trial (likelihood). The quality of the
visual feedback was also varied, in some cases a ball was
shown at the position of the cursor giving precise feedback
whereas in other trials a large cloud was shown at the
position of the cursor thereby increasing the variability
(noise) in the sensory input (see Figure 1d).

In this experiment, the Bayesian estimation process
defines the optimal estimate as a weighted combination of
the mean location of the prior and the peak of the sensory
likelihood (see Box 2). Moreover, it predicts that with
increasing noise in the sensory feedback subjects should
increase the weight of the prior and decrease the weight of
their sensory feedback in their final estimate of the
location. Figure 1d shows that this Bayesian strategy is
observed. From the data it is possible to infer the prior
that people are using – assuming that they use an optimal
Bayesian strategy. Figure 1e shows that people used a
prior that was very close to the optimal one.

This experiment therefore shows that subjects in this
task exhibit a strategy very similar to the one predicted
by optimal Bayesian statistics. Some experiments could

http://www.sciencedirect.com


Box 2. Bayesian statistics

When we have a Gaussian prior distribution p(x) and we have a noisy

observation o of the position that leads to a Gaussian likelihood (red

curve, Figure I) p(ojx) it is possible to use Bayes rule to calculate the

posterior distribution (yellow curve, Figure I; how probable is each

value given both the observation and the prior knowledge):

pðx joÞZpðojxÞ
pðxÞ

pðoÞ

This equation assigns a probability to every possible location. If we

assume that the prior distribution p(x) is a symmetric one dimensional

Gaussian with variance s2p and mean m̂ and that the likelihood p(ojx) is

also a symmetric one dimensional Gaussian with variance s2o and

mean o, it is possible to compute the posterior that is then also

Gaussian in an analytical way. The optimal estimate x̂ , that is the

maximum of the posterior is:

x̂ ZaoC ð1KaÞm̂

where

aZ
s2p

s2p Cs2o

Moreover we can calculate the width of the posterior as s2Zaso . The

parameter a is always less than 1. This Bayesian approach leads to a

better estimate of possible outcomes than any estimate that is only

based on the sensory input.
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Figure I. Bayesian integration. The green curve represents the prior and red

curve represents the likelihood. The yellow curve represents the posterior, the

result from combining prior and likelihood.
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even relate Bayesian priors for movement production
with properties of motor neurons [13]. Using a prior in
a Bayesian way, however, is not only restricted to
producing movement trajectories and is seen in both
force estimation [14] and timing judgements [15]. These
results show that the prior knowledge used by human
subjects remains plastic and we can optimally adapt to
the statistical properties of a task.
Bayesian integration in perception

In addition to results from sensorimotor integration,
other research has addressed how human perception
can be described by Bayesian estimation processes
([16,17], see Yuille and Kersten, this issue). Within
this framework many illusions and other visual effects
can be understood [18] by making general assumptions
about priors over possible visual objects [19,20] or
the direction of illumination [21,22]. Brightness percep-
tion [23], shape perception [24], movement perception
[25] and certain illusions in length perception [26] have
been shown to arise as optimal percepts in Bayesian
models in which subjects have uncertainty about
the state of the world based on vision alone and
therefore incorporate (reasonable) prior beliefs over
the possible states of the world. These studies with
different approaches have shown that human perception
is close to the Bayesian optimal suggesting the
Bayesian process may be a fundamental element of
sensory processing.
www.sciencedirect.com
Bayesian cue combination

Bayesian processes can also be used to understand how
cues from two different modalities can be combined into a
single estimate. For example if we feel the size of an object
and at the same time see this object we may want to
combine the information form these two modalities. The
computational problem that occurs is that if the two cues
need to be combined into a joint estimate, equivalent to the
way the prior needs to be integrated with the cue in
Bayesian integration. To combine cues the system needs to
weigh one cue against the other. Calculating this
optimally in a Bayesian way means that the weighing
will depend on the relative uncertainties in the cues.
Recent studies have shown that we are close to the
Bayesian optimal when we combine visual and haptic
information to estimate the size of an object [27] or visual
and auditory information to estimate the position of a
stimulus [28]. Similarly, we can combine multiple cues
within a modality such as visual texture and motion or
stereo cues into a single depth estimate in a way predicted
by Bayesian statistics [29–31].

Recent studies have examined how we can combine
proprioceptive information about the location of our hand
with visual information of the hand itself [32,33] or how
we estimate the position of their hand and the configu-
ration of their joints [34]. These results too may be
interpreted in a Bayesian framework as optimal esti-
mation in the presence of unknown alignments of the
relevant coordinate systems. Bayesian statistics is a
general framework that specifies how we could optimally

http://dx.doi.org/doi:10.1016/j.tics.2006.05.002
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Box 3. Utility functions

To describe decision making, economists usually use the concept

of a utility function [62,63], a hypothesized function that increases

with the desirability of the outcome. Although these concepts arose

in economics, utility does not have to be directly related to money.

For example state of health, and even altruistic feelings of having

helped others or having punished defectors [64] is assumed to

influence utility. Mathematically utility is defined as the value that

we prescribe to each possible outcome of our decisions:

Utility ZUðoutcomeÞ

Utility may have a complex relationship to quantity of rewarding

stimuli. For example, if we invest well and double our money, we

are now twice as well off with respect to the money we own but

our utility may not increase by a factor of two as it may tend to

saturate as our wealth increases. This effect is described in the

framework of prospect theory [65]. Although various deviations

have been found that show that people do not seem to perform

statistically optimally, the assumption of optimality can still

typically explain much of the observed behaviour. Because utility

is such an important concept different fields refer to the same idea

using different names. Motor control often uses Loss function or

Cost function as a name for the negative of the utility function.

Neuroscience often refers to functions optimized by neurons as an

Objective function. And within a reinforcement learning framework

[66,67] utilities are typically called rewards. Different communities

refer to concepts equivalent to utility under different names. In

some cases a second function is introduced that characterizes the

total cost of a movement (‘cost to go’) which is the integrated

instantaneous cost. Regardless of how they are a called, utility

functions serve to quantify the relative values of different

decision outcomes.

A concept that is often used to study utility is the concept of

indifference curves. Consider there are two goods, for example apples

and bananas. We can ask how desirable different combinations of

apples and bananas are – that is their utility function. An indifference

curve is a curve within this space along which people are equally

content, that is have the same utility. If people for example only care

about the calories of the food, the utility function would be a straight

line (see Figure I). If people prefer amixture between different goods to

the same amount of just one good, a situation that is common in

economics the indifference curve takes on a convex form. Asking

people questions about their preferences can reveal these curves.

However, from choice alone it is impossible to know the full utility

function. When all utilities are scaled by a constant, decisions

are unaffected.
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Figure I. Indifference curves. People who care only about the number of calories

would exhibit straight indifference curves. People who prefer a mixture would

exhibit convex indifference curves.
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combine different sources of information into a single
estimate. Human performance indicates that in many
cases of cue integration they operate very close to this
theoretical optimum.

Taken together these studies show that over a wide
range of phenomena people exhibit approximately Bayes-
optimal behaviour. This makes it likely that the algorithm
implemented by the CNS may actually support
mechanisms for those kinds of Bayesian computations.

Costs and rewards

To put movement into a rational framework it is
necessary to define a function that measures how good
or bad the outcome of a particular movement is. This
function, often termed cost may for example be related to
the energy consumed during a movement. In general
people should prefer less demanding movements –
movements that put less strain on the muscles or
movements that can be executed using less energy. We
are thus faced with the problem of selecting among the
infinite set of possible movements the one that mini-
mizes the cost (see Box 3).

Ethological cost functions

Several different cost functions have been proposed for
pointing movements. For example, it has been proposed
that people move so that their movements are as smooth
as possible [35,36]. Such a cost function can explain many
findings about target directed movements. More recently
www.sciencedirect.com
evidence has been presented that the precision of the
movement, rather than smoothness, defines the cost
function [37]. This approach provides a more intuitive
choice of a cost that is based on accuracy, as well as
explaining a range of new behaviours. In these approaches
a utility function is assumed, which measures how well a
movement is performed.

Several recent studies have shown that when the
utility is externally defined, where the outcome of a
movement is assigned a monetary reward, subjects
quickly learn to move in a way that maximises the
potential reward [38,39]. However, there are certainly
limits to our ability to perform in an optimal fashion
and as the complexity of a task is increased this
optimality breaks down [40]. Nevertheless, many move-
ment phenomena can be explained by assuming that
people move optimally with respect to a simple utility
function. The optimality framework provides both a
more compact representation than a description of the
behaviour and also addresses why we choose to move
the way we do.
Measuring cost functions

The cost function used by the CNS might depend on
several movement parameters, such as force magnitudes
and force durations. Various hypothesized utility func-
tions predict different choices and thus different indiffer-
ence lines (Figure 2a; Box 3). In an experimental setting it
was addressed which function of force is optimized.

http://www.sciencedirect.com
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Figure 2. Measuring utility functions. (a) Indifference curves in the force–time space as predicted by different cost functions. The cost is the same along each curve. (b) The

cost is inferred from the subject’s decisions. The ‘hotter’ the colour, the less desirable the force. (Adapted from [41]).
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Human volunteers had to produce forces of varying
magnitude and duration [41]. During each trial subjects
had to choose which of two combinations of force
magnitude and duration they prefer. From a large number
of such choices it is possible to infer the indifference lines
in the F–T space (Figure 2a). From these indifference
curves it is possible to infer the cost function. The
measured cost function (Figure 2b) for this task is
relatively complicated and differed from the predictions
made by any of the known models. Experiments along
these lines (see also [42]) can help address utility function
that depend on several parameters. The usefulness of this
approach, however, will ultimately depend on the degree
of generalization. It will depend on how well new
movements can be predicted by cost function measured
for one class of movement. We expect that many of the
utility function used by human subjects will be understood
by an adaptive combination of a relatively small number of
simple utility functions.
+ noise

Utility

Decision maker 

Biomechanical plant
Models of optimal control: using online feedback

Understanding task statistics, the noise on our sensors
and actuators and the utility function allows us to predict
optimal behaviour. So far we have discussed these
processes applied to discrete decisions chosen from a
small number of possible decisions. However, in general
we produce a continuous trajectory of movement in
response to a contiguous stream of sensory input. The
system will thus constantly use feedback to update its
movements (Figure 3).
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Figure 3. Optimal controllers. In generating a movement, the controller, an optimal

decision maker, takes into account both the output of the Bayesian estimation

process as well as the utility function. The Bayesian estimator combines inputs

from the sensors (for example, about limb positions) with prior knowledge in

addition to the efference copy – the signal sent by the CNS to the muscles.
Kalman filter

A large number of studies in the area of optimal control
use these ideas to model human behaviour.
In situations in which the we need to estimate the
state of the body as it evolves over time we typically
use a Kalman filter [43,44]. Kalman filters are a
standard technique used in engineering when the
unknown state is to be tracked over time. Some
psychophysical experiments [43] tested the hypothesis
that people use such a mechanism to estimate how
their hand moves in the dark. After each movement
they had to estimate where their hand was even though
www.sciencedirect.com
it was not visible An optimal Kalman filter – a
Bayesian technique for continuously varying problems
– produced very similar results if it was assumed that
people systematically overestimate the forces they
produce. Although initially human subjects became
less precise, they then went through a period where
they became progressively became more precise as a
function of the trial duration. This effect can be traced
back to the finding that a Kalman filter progressively
becomes more precise as additional sensory information
comes in. It thus seems that people are able to
continuously update their estimates based on infor-
mation coming in from the sensors in a way predicted
by Bayesian statistics.

Optimal feedback control

In many cases people do not just have to estimate the
position of their limbs but instead have to choose a
strategy by which they will efficiently reach their
target, a strategy that is optimizing a cost function.
Optimal feedback control [45] is a framework for
studying such problems. This approach is identical to

http://www.sciencedirect.com


Box 4. Questions for future research

The decision theoretic description of human movement leads to

several important questions.

† How is prior information encoded in the CNS? How is it combined

with new evidence to generate estimates? Some theoretical studies

suggest that uncertainty may be represented by neuromodulators

[68]. However, the kind of uncertainty that is associated with virtually

any variable may well be represented differently.

† Which approximations does the nervous system use? It may have

evolved efficient approximate solutions towards solving problems in

the areas of Bayesian statistics, decision making and control. The

approximations used by the CNS may inform future

algorithm developments.

† Most studies on Bayesian integration are done in very simple

cases. Are the mechanisms similar in the case of making large

complicated movements using many joints. Movements of, for

example, the hand involve many joints. Moreover, typically move-

ments involve feedback and the system needs to estimate its state as

it changes over time.

† Are utilities and probabilities represented independently of one

another? Can one change either of them while leaving the other

intact and predict the behavioural changes?

† Are these mechanisms of decision making shared between high-

level decision making in the context of cognitive problems and low-

level intuitive decision making for movement.
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decision theory where a decision is happening at each
point in time. Using optimal feedback control as a
model of human performance makes several interesting
predictions that have been experimentally verified.
Importantly the strategy to specify a desired trajectory
and then just use feedback to keep you on that
trajectory is suboptimal and there is experimental
evidence that people use a strategy predicted by
optimal feedback control [46–48]. Similar effects can
be seen in cases where information is integrated from
one trial to the next [49].

In the typical movements that people execute in their
everyday life they usually use visual feedback of their
movements [50]. For that reason optimal feedback
control may be a good candidate for modelling typical
behaviour. Optimal feedback control is easily solved in
the case of linear dynamics, quadratic costs and
Gaussian noise sources (LQG). However, for more
realistic situation of nonlinear system such as our arm,
with more complex models of noise and cost it can still
be prohibitively hard to derive optimal control laws.
Some recent research addresses new approaches for
computing such control laws [51–53]. Optimal feedback
control will allow predictions of progressively more
complicated and interesting human movements derived
from Bayesian Decision Theory.
Future directions

The approach of formalizing human decision making as
being based on partial uncertainty and utility functions
formalizes the problems that are solved by the CNS.
There is converging evidence from various communities
that Bayesian approaches can serve as a coherent
description of human decision making.

The optimal statistical approach to sensorimotor
control raises many important questions (see Box 4).
www.sciencedirect.com
However, many of our movements are in the context of
complicated tasks such as social interaction. In such cases
a good Bayesian model may be arbitrarily complicated as
it involves a Bayesian inference about the state of the
world, including the mental state of other people. From
the movements of other people we can start inferring their
internal state. Although this is theoretically possible [54]
it will ultimately involve inferring the utility functions of
others which is a computationally hard problem [55].
Novel Bayesian approaches have started to be able to
describe how people make causal inference [56], a skill
that people are particularly good at. In general, Bayesian
inference on complicated real world problems are often
still proving prohibitively hard from a computational
perspective. Quite possibly the brain is using efficient
approximations to Bayesian decision making that still
allow it to perform well.

Beyond those algorithmic problems it is also import-
ant to consider possible constraints and biases in
making inferences that are imposed by the brain. The
brain is the substrate that is being used to support
Bayesian inference and optimal control [57,58]. The way
the brain is built, acquired through the course of
evolution will already supply us with some knowledge
about what kind of a world to expect. It will thus
already define what class of models can be implemented
and moreover what kind of inference algorithms the
brain will have to use. We should not expect that it will
be the Bayesian optimum in all cases. Finding
deviations from optimal behaviour may lead to inter-
esting insights into the organization of the CNS.
Moreover, the Bayesian approach does not specify a
representation of the involved data structures. The
algorithm implemented by the CNS should not only
support Bayesian calculations but also a systematic way
of acquiring a useful representation on which to use
these calculations.

In conclusion, Bayesian decision theory predicts many
of the properties of the movement system and is a coherent
framework in which to think about movement decisions.
How the brain solves the underlying inference problems
and how it represents its information is an important
question for further research (see also Editorial ‘Where
next?’ in this issue).
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38 Trommershäuser, J. et al. (2003) Statistical decision theory and the
selection of rapid, goal-directed movements. J. Opt. Soc. Am. A Opt
Image Sci Vis 20, 1419–1433

39 Maloney, L.T. et al. Questions without words: A comparison between
decision making under risk and movement planning under risk. In
Integrated Models of Cognitive Systems (Gray, W., ed.), Oxford
University Press (in press)

40 Wu, S.W. et al. (2006) Limits to human movement planning in tasks
with asymmetric gain landscapes. J. Vis. 6, 53–63

41 Körding, K.P. et al. (2004) A neuroeconomics approach to measuring
human loss functions. PLoS Biol. 2, e330

42 Körding, K.P. andWolpert, D. (2004) The loss function of sensorimotor
learning. Proc. Natl. Acad. Sci. U. S. A. 101, 9839–9842

43 Wolpert, D.M. et al. (1995) An internal model for sensorimotor
integration. Science 269, 1880–1882

44 Kalman, R.E. (1960) A new approach to linear filtering and prediction
problems. J. of Basic Engineering 82D, 35–45

45 Todorov, E. (2004) Optimality principles in sensorimotor control. Nat.
Neurosci. 7, 907–915

46 Todorov, E. and Jordan, M.I. (2002) Optimal feedback control as a
theory of motor coordination. Nat. Neurosci. 5, 1226–1235

47 Saunders, J.A. and Knill, D.C. (2005) Humans use continuous visual
feedback from the hand to control both the direction and distance of
pointing movements. Exp. Brain Res. 162, 458–473

48 Saunders, J.A. and Knill, D.C. (2004) Visual feedback control of hand
movements. J. Neurosci. 24, 3223–3234

49 Baddeley, R.J. et al. (2003) System identification applied to a
visuomotor task: near-optimal human performance in a noisy
changing task. J. Neurosci. 23, 3066–3075

50 Land, M. et al. (1999) The roles of vision and eye movements in the
control of activities of daily living. Perception 28, 1311–1328

51 Todorov, E. (2005) Stochastic optimal control and estimation methods
adapted to the noise characteristics of the sensorimotor system.
Neural Comput. 17, 1084–1108

52 Brock, O. and Kavraki, L. (2001) Decomposition-based
motion planning: a framework for real-time motion planning
in high-dimensional configuration spaces. In IEEE International
Conference on Robotics and Automation (Vol. 2), pp. 1469–1474,
ICRA

53 Todorov, E. et al. (2005) From task parameters to motor synergies:
a hiearachical framework for approximately-optimal feedback
control of redundant manipulators. Journal of Robotic Systems
22, 669–710

54 Wolpert, D.M. et al. (2003) A unifying computational framework for
motor control and social interaction. Philos. Trans. R. Soc. Lond. B
Biol. Sci. 358, 593–602

55 Abbeel, P. and Ng, A.Y. (2004) Apprenticeship learning via inverse
reinforcement learning. In Twenty-first International Conference on
Machine Learning (Vol. 69), pp. 1–8, ACM International Conference
Proceeding Series

56 Tenenbaum, J.B. et al. Intuitive theories as grammars for causal
inference. In Causal Learning: Psychology, Philosophy, and Compu-
tation (Gopnik, A. and Schulz, L., eds), Oxford University Press (in
press)

57 Scott, S.H. (2004) Optimal feedback control and the neural basis of
volitional motor control. Nat. Rev. Neurosci. 5, 532–546

58 He, J. (1991) Feedback gains for correcting small perturbations to
standing posture. IEEE Transactions on Automatic Control 36,
322–332

59 Guiso, L. et al. (1996) Income risk, borrowing constraints, and
portfolio choice. Am. Econ. Rev. 86, 158–172

60 Gibbons, R. et al. (2005) Comparative advantage, learning, and
sectoral wage determination. J. Labor Econ. 23, 681–724

http://dx.doi.org/doi:10.1016/j.tics.2006.05.002
http://dx.doi.org/doi:10.1016/j.tics.2006.05.002
http://www.sciencedirect.com


Review TRENDS in Cognitive Sciences Vol.10 No.7 July 2006326
61 Bernanke, B.S. and Woodford, M. (1997) Dynamic effects of monetary
policy. Journal of Money, Credit and Banking 29, 653–684

62 Bentham, J. (1780) An Introduction to the Principles of Morals and
Legislation, Clarendon Press

63 Bernoulli, D. (1738) Specimen theoriae novae de mensura sortis.
Comentarii academiae scientarium imperialis Petropolitanae (for
1730 and 1731) 5, 175–192

64 Fehr, E. and Rockenbach, B. (2004) Human altruism: economic, neural,
and evolutionary perspectives. Curr. Opin. Neurobiol. 14, 784–790
Five things you might no

1.

Elsevier is a founder member of the WHO’s HINARI and AGORA ini

access to scientific literature. More than 1000 journals, including the T

at significantly re

2.

The online archive of Elsevier’s premier Cell Press journal collection w

recent archive, including Cell,Neuron, Immunity and Current Biology

sites 12 months after artic

3.

Have you contributed to anElsevier journal, book or series?Did you kn

stand-alone CDs when ordered directly from us?

+1 800 782 4927 (US) or +1 800 460 3110

or +44 1865 474 010 (

4.

Elsevier has a long tradition of liberal copyright policies and formany y

and the posting of final papers on internal servers. Now, Elsevier has

the final text version of their papers on both their person

5.

The Elsevier Foundation is a knowledge-centered foundationmaking

culturally rich global organization, the Foundation has funded, for ex

Philadelphia, provided storybooks to children in Cape Town, sponsor

Brigham and Women’s Hospital and given funding to the 3rd Intern

www.sciencedirect.com
65 Kahneman, D. and Tversky, A. (1979) Prospect theory: an analysis of
decision under risk. Econometrica XVLII, 263–291

66 Sutton, R.S. and Barto, A.G. (1998) Reinforcement Learning: An
Introduction, MIT Press

67 Smart, W.D. and Kaelbling, L.P. (2002) Effective reinforcement
learning for mobile robots. In International Conference on Robotics
and Automation (Vol. 1), pp. 3404–3410, IEEE

68 Yu, A.J. and Dayan, P. (2005) Uncertainty, neuromodulation, and
attention. Neuron 46, 681–692
t know about Elsevier

tiatives, which enable the world’s poorest countries to gain free

rends and Current Opinion collections, will be available for free or

duced prices.

ill become freely available from January 2005. Free access to the

, will be available on both ScienceDirect and the Cell Press journal

les are first published.

ow that all our authors are entitled to a 30%discount on books and

For more information, call our sales offices:

(Canada, South & Central America)

rest of the world)

ears has permitted both the posting of preprints on public servers

extended its author posting policy to allow authors to freely post

al websites and institutional repositories or websites.

grants and contributions throughout the world. A reflection of our

ample, the setting up of a video library to educate for children in

ed the creation of the Stanley L. Robbins Visiting Professorship at

ational Conference on Children’s Health and the Environment.

http://www.sciencedirect.com

	Bayesian decision theory in sensorimotor control
	Introduction
	Estimation using Bayes rule
	Bayesian integration in motor control
	Bayesian integration in perception
	Bayesian cue combination

	Costs and rewards
	Ethological cost functions
	Measuring cost functions

	Models of optimal control: using online feedback
	Kalman filter
	Optimal feedback control

	Future directions
	Acknowledgements
	Supplementary data
	References


