
Machine Learning and Pattern Recognition
Introduction to Matlab

Amos Storkey, David Barber and Chris Williams
a.storkey@ed.ac.uk

Course page : http://www.inf.ed.ac.uk/teaching/courses/mlpr/

This is a modified version of a text written by Chris Williams and updated
by David Barber.

For web based help follow the links in
http://www.ai.mit.edu/courses/6.867-f01/matlab.html.
See also http://www.math.unh.edu/∼mathadm/tutorial/software/matlab/

Background

This document has the objective of introducing you to some of the facilities
available in Matlab , including:

1. Using the interpreter and help system.

2. Plotting facilities.

3. Scripts and functions.

4. Matrices.

Section 5 gives information on the Netlab toolbox for neural networks.

Matlab is an interpreted language (and as such can be much slower than
compiled software) for numeric computation and visualisation. It offers
high level facilities for dealing directly with mathematical constructs. The
particular benefits that it offers for this course are:

1. Excellent support for linear algebra and matrix operations. The ba-
sic type in Matlab is a double precision matrix. The software was
originally developed as a linear algebra package (Matlab stands for
MATrix LABoratory) and has efficient and numerically reliable algo-
rithms for matrix inversion, eigenvalues etc.

2. Visualisation facilities. The in-built graphing and plotting functions
are easy to use for both 2d and 3d plots.

3. Ease of extension. Functions and scripts can be written in the Matlab
language (in ‘M-files’) and these can then be called in exactly the same
way as the core functionality of Matlab . In fact, the ‘toolboxes’
that extend the functionality of Matlab to more specialist areas

are written in this way. Netlab (a Matlab toolbox for neural
networks) consists of a set of M-files.

4. Portability. Software written in the Matlab language is portable to
any platform that runs Matlab , including Unix machines, PCs and
Macintoshes.

1 Using the Matlab interpreter and help system

The basic objects that Matlab works with are matrices: 2-d rectangular
arrays of double precision (or complex) numbers. Operations and commands
in Matlab are intended to work with matrices just as they would be written
down on paper. The Matlab interpreter can be controlled dynamically
from the command line.

1. To enter a matrix, you should follow these conventions:

• Separate entries with white space or commas.

• Use a semi-colon ; to denote the end of each row.

• Surround the entries with square brackets [and].

The statement

A = [8 1 6; 3 5 7; 4 9 2]

results in the output

A =

8 1 6
3 5 7
4 9 2

Matlab will output the result of every command. To suppress this,
you should terminate your command with a semi-colon ;. Thus, typing

A = [8 1 6; 3 5 7; 4 9 2];

still sets A to be the same matrix, but there is no output.

The value of any variable, such as the matrix A, is retained until it
is explicitly modified. If there is no variable on the left hand side of
an expression, then Matlab assigns the result to a built-in variable
named ans.

To find out the value of the i, jth element of A, type A(i, j). For
example, on typing

b = A(1, 2)

the following is output

b =

1

Note that matrix indices start from 1. To obtain the second row of
the matrix, type

2

c = A(2, :)

which gives the following output:

c =

3 5 7

To obtain the third column, type

d = A(:, 3)

which gives the following output:

d =

6
7
2

2. In some situations, Matlab gives a special meaning to vectors, which
are matrices with only one row or column. A particularly useful way
of forming row vectors is using the colon operator :. The line

x = 0:0.1:1;

generates a row vector x of length 11 containing the values from 0 to
1 with increments of 0.1. This construction is often used to generate
the x-axis points in graphs. So the command

y = sin(2 * pi * x);

generates regularly spaced values from a sine curve.

3. The Matlab interpreter allows you to edit your command line. This
makes it much easier to correct small typing mistakes or to repeat
sequences of nearly identical commands without error. You can use
emacs-style command line editing, e.g. Ctl-p gives you the previous
command, and this can be repeatedly used to go back in the com-
mand history. You can then edit a command line using the usual
delete/backspace key, and move around in the command line using
Ctl-b (moves backwards) and Ctl-f (forwards).

Alternatively, the up and down arrow keys (usually on the right of
your keyboard) can be used to move forwards or backwards through
the command history, while left and right arrow keys position the
cursor on the command line. Typing carriage return anywhere on the
line will then submit the command to the interpreter.

For example, to modify the variable x, type up arrow twice. This will
give you the same line as you typed two commands ago, namely:

x = 0:0.1:1;

By moving the cursor, deleting the characters between the two colons,
and typing 0.05, modify this to read

x = 0:0.05:1;

and type carriage return to submit the command. Now the vector x
has length 21 and contains the values from 0 to 1 with increments of

3

0.05. However, y still has length 11, and its values no longer corre-
spond correctly with those in x. (Unlike with a spreadsheet, we cannot
link variables in Matlab so that they are automatically updated.)
To rectify this, the simplest solution is to repeat the definition of y by
typing up arrow twice and submitting the command.

4. To save data, you can use the command save. For example, to save
the variable A in ASCII format into a file A.dat, type:

save A.dat A -ascii

Type ls to get a listing of the files in your current directory, which
should include A.dat. (Note that normally one can simply use save
A.dat A which stores the data in an efficient format. The data can be
reloaded using load A.dat)

5. Of course, most of the time the datasets we will be analysing are far
too large to type at the command line without error. Instead, we
can read in the matrices from external files. These files can be in a
Matlab format, or stored as text, with each row of the matrix on a
new line. To read in some data which is stored in Matlab format,
type (assuming that you have a Matlab file data.mat in your current
working directory)

load data

You can find out what variables you currently have by typing:

whos

6. Matlab is a very powerful tool with hundreds of built-in functions.
Even the most hardened Matlab veteran may occasionally forget the
name of a function or the order of its arguments. Fortunately, there
is an on-line help facility that provides information on most topics.
To get help on a specific function, you need only type help followed
by the function name. So, to find out about the function mean, you
should type:

help mean

A more general information search is provided by lookfor (which is
similar to the Unix apropos command). This enables you to find out
what functions Matlab provides for certain operations. For example,
to find out what functions there are related to calculating covariances,
type:

lookfor covariance

2 Simple use of two dimensional plotting facilities

Instructions:

4

1. A dataset for a toy regression problem (the noisy sin) can very easily
be plotted using the vector x we created earlier. The simplest form of
the plot function takes the x vector as its first argument, and the y
vector as its second argument. Different line styles (or scatter plots)
can be defined with a third argument. (For more detail, just type
help plot.) To see the data, type

plot(x, sin(2*pi*x) + 0.1*randn(size(x)), ’+’)

which will give you a scatter plot of the data with yellow plusses for
each point. The function randn generates samples from a standard
normal distribution (i.e. a Gaussian with zero mean and unit vari-
ance).

Notice that the function sin can take a vector (or indeed a matrix)
as input, and return the sine of each element.

Say we also wanted to plot another curve on the same axes, e.g.
cos 2πx. We need two new ideas: (i) the use of hold on, which per-
mits multiple plots to be made on the same axes and (ii) the choice
of different colours for different plots. This can be achieved by a third
argument to the plot function (for more detail, just type help plot).

plot(x, sin(2*pi*x))
hold on
plot(x, cos(2*pi*x), ’g’)
hold off

The ’g’ option plots the cosine curve in green. hold off cancels the
hold on command.

It is possible to add extra information to the plot using the title,
xlabel, ylabel, and text commands, and to control the scaling of
the axes using the axis command. Note that these commands must
follow the plot to which they refer. Axes with non-linear scaling can
be obtained with the loglog, semilogx and semilogy commands.

A plot can easily be saved in a variety of formats. For example, to
save a plot as an encapsulated postscript file called myplot.eps, type

print -deps myplot.eps

2. We can also easily make histogram plots. First, create some data by
typing

z = randn(500,1)

This will create a vector of 500 (pseudo)random samples from a zero-
mean unit-variance Gaussian distribution. We will now plot a his-
togram of this data, specifying 15 bins by typing

hist(z, 15)

Does it look how you expect it should?

3 Elementary use of scripts and functions.

In some exercises you will need to edit existing scripts and functions, either
to test the effect of varying parameters, or to make it easier to run a sequence

5

of instructions multiple times (in case of typing errors). This exercise is
designed to give you some practice at this.

Scripts automate a fixed sequence of instructions. Functions are more flex-
ible, in that they can take arguments and return values, which allows the
user to abstract away from particular variable names. Both functions and
scripts are text files (called M-files) which have the name foo.m, where foo
is the script or function name. Functions and scripts are invoked in Matlab
by typing name with the relevant arguments enclosed in round brackets.

Instructions:

1. Copy the file http://anc.ed.ac.uk/~dbarber/lfd1/whiten.m to an
appropriate directory.

2. Start up a text editor.

3. Open the file whiten.m. The purpose of this function is to pre-process
data by applying a linear transformation so that all the variables are
zero mean and unit variance. This file assumes that the data is in the
form where each column of the matrix represents a datapoint. This is
the most natural mathematical way to represent a set of datapoints.
(Unfortunately, the usual Matlab convention is that each column
represents a variable and each row represents an observation! We are
therefore going against Matlab convention, but I think towards a
more consistent convention for our course). The first line of the file

function [y,mu,s] = whiten(x)

defines the function interface. The argument x is the input data ma-
trix, while the return value y is the processed data (and therefore has
the same dimensions as x). The variables x, y and all other variables
in this function are local to this function and are quite distinct from
the variables we have already defined in this session.

4. Note that the % symbol indicates that the rest of the line is a comment
and will be ignored by the Matlab interpreter. The line

n = size(x, 2);

finds the number of columns in the data matrix. After this, the lines

mu = mean(x’)’;
s = std(x’)’;

calculate the mean and standard deviation of each column of the data
(the transposes are due to Matlab ’s convention of a datapoint being
a row). The next step is to subtract the mean of each column. While
it would be possible to do this using Matlab ’s for loops, it would be
very slow. It is much more efficient to use matrix operations. What
is required is to subtract a matrix where every entry in the ith row is
the mean of that row. This is done by the lines:

e = ones(1,n);

6

y = x - mu*e;

Now y is a data matrix where each variable has zero mean. We just
need to divide each column by the standard deviation. To do this, we
use the element-wise division operator ./ (the usual division operator
a/b essentially multiplies a by the matrix inverse of b).

y = y ./ (s*e);

5. You are now ready to run the function. Switch back to the Matlab
command window. First, we can generate some random data:

foo = rand(2,10);

The function rand generates samples from a random variable which is

uniformly distributed on the interval [0, 1]. This dataset has 2 rows
and 10 columns and represents a set of 10 datapoints, each of which
is two-dimensional. Type

m = mean(foo’)’
s = std(foo’)’

to find out the mean and standard deviation of each variable. Now we
can normalise the data with our function. Type

bar = whiten(foo);

and find out the new mean and standard deviation. To within round-
ing error, they should be zero and one respectively.

4 Matrices

4.1 Matrix addition and multiplication

Enter a matrix by typing

A = [8 1 6; 3 5 7; 4 9 2]

This results in the output

A =

8 1 6
3 5 7
4 9 2

We can also enter matrices B and C by typing B = [1 4 7; 2 5 8; 3 6 0]
and
C = [1 2 3; 4 5 6]. Does the statement D = A + B do what you would
expect? How about E = A + C?

To transpose a matrix in Matlab we use the ’ operator (a single back-
quote). For example, try F = A’ .

Suppose we define a column vector by g = [-1 0 2]’. Then we multiply
this vector by a matrix by typing h = A*g. Suppose we create a row vector,
e.g. u = g’. What happens if we then try v = A*u ? Why ?

7

Matlab will, of course, also multiply matrices of the appropriate size. For
example
A2 = A*B is valid, as is A3 = C*A. What about A4 = A*C ?

4.2 Solving systems of linear equations

Suppose we want to solve the system of linear equations represented by

Ax = g.

Matlab provides a special division operator for this purpose; we can simply
write

x = A \ g

and the solution,

x =
-0.0194
0.2722

-0.1861

is printed out. You can check that x is the solution to the system of linear
equations by calculating A*x.

4.3 Manipulating the elements of a matrix

It is possible to cut parts out of matrices and perform quite complex op-
erations cutting-and-pasting matrix entries in Matlab . We will consider
some simple examples. What is the effect of

A
A(2:3,1:2)

Note the syntax above: 2:3 specifies the rows wanted, and 1:2 specifies
the desired columns. Rows and columns can be manipulated as complete
entities. Hence A(1,:) gives the first row of A, and A(:,2) gives the
second column.

4.4 Special matrices

Some special matrices that Matlab knows about are ones(m,n), zeros(m,n),
rand(m,n), randn(m,n) and eye(n). ones(m,n) generates a matrix of
sizem×n with all the elements equal to 1. Try typing ones(4,2). zeros(m,n)
acts similarly but fills all of the elements with 0. This can be useful for ini-
tializing a matrix before computations. Try zeros(3,3).

rand(m,n), randn(m,n) generate random matrices of size m × n. rand
choses (pseudo)random numbers in the interval (0.0, 1.0), while randn gen-
erates them according to a Normal distribution with zero mean and unit
variance. Try randn(5,3).

eye(n) generates a n× n identity matrix. Type eye(5) to check this.

8

4.5 Element-by-element operations

Sometimes we don’t want to do matrix operations, but elementwise opera-
tions instead. These are achieved by using a dot . to precede the operator.
For example, say we have the vectors

y = [1 2 3]; z = [4 5 6];

What is the effect of

y .* z
y ./ z
y .^2

These “dot” operations can also be performed on matrices; try B./A

4.6 Output formatting

The name and value of a variable can be output just by leaving the semicolon
off the end of the line. However, it is possible to produce tidier output by
using the function disp. For example

disp(’the values in matrix A are’);
disp(A);

It is also possible to use C-like syntax with the command fprintf. The
format command specifies the output format. For example type

pi
format long
pi

5 Netlab neural network software

The Netlab neural network software is a toolbox for Matlab, written by Ian
Nabney and Christopher Bishop.

It consists of a library of Matlab functions and scripts based on the approach
and techniques described in Neural Networks for Pattern Recognition by
Christopher M. Bishop, (Oxford University Press, 1995). The Netlab home-
page can be found at

http://www.ncrg.aston.ac.uk/netlab/index.html

The software (should have been!) installed on the School machines, so that
upon typing the command matlab from the command line the netlab func-
tions are ready for your use. If an error occurs, probably the routines have
not been installed. Hoever, you can do this simply by downloading the
routines from the Netlab homepage and placing them in your working di-
rectory (or in any of your directories and adjusting the Matlab path so that
Matlab can find the routines). The command help netlab issued within
MATLAB will give a listing of the various functions and demos available,
and the command demnlab will bring up a GUI interface to the demos.

9

6 Writing functions

In writing Matlab functions, any commented lines after the function dec-
laration will be returned when you type

help function_name

You should comment every function you write with:

• The function name, and a one line description.

• A line giving the functional form.

• Any more detailed description needed.

• A description of each of the input and output variables. Standard
convention is to refer to the variables in upper case (even though they
are actually lower case in reality).

• A copyright statement.

Some hints on good Matlab style can be found in Richard Johnson’s MAT-
LAB Programming Style Guidelines at
http://www.mathworks.com/matlabcentral/fileexchange/
+loadFile.do?objectId=2529&objectType=FILE+.

10

