
Fitting and initializing neural networks
Neural networks are almost always fitted with gradient based optimizers, such as variants
of Stochastic Gradient Descent1. We defer how to compute the gradients to the next note.

1 Initialization
How do we set the initial weights before calling an optimizer? Don’t set all the weights to
zero! If different hidden units (adaptable basis functions) start out with the same parameters,
they will all compute the same function of the inputs. Each unit will then get the same
gradient vector, and be updated in the same way. As each hidden unit remains the same, or
neural network function can only depend on a single linear combination of the inputs.

Instead we usually initialize the weights randomly. Don’t simply set all the weights using
randn() though! As a concrete example, if all your inputs were xd ∈ {−1,+1} the activation
(w(k))>x to hidden unit k would have zero mean, but typical size

√
D if there are D inputs.

(See the review of random walks on the expectations notes.) If your units saturate, like
the logistic sigmoid, most of the gradients will be close to zero, and it will be hard for the
gradient optimizer to update the parameters to useful settings.

Summary: initialize a weight matrix that transforms K values to small random values, like
0.1*randn()/sqrt(K), assuming your input features are ∼1.

The MLP course points to Glorot and Bengio’s (2010) paper Understanding the difficulty of
training deep feedforward networks, which suggests a scaling ∝ 1/

√
K(l) + K(l−1), involving

the number of hidden units in the layer after the weights, not just before. The argument
involves the gradient computations, which we haven’t described in detail for neural networks
yet, so we defer the interested reader to the paper or the MLP (2019) slides2.

Some specialized neural network architectures have particular tricks for initializing them.
Do a literature search if you find yourself trying something other than a standard dense
feedforward network: e.g., recurrent/recursive architectures, convolutional architectures,
transformers, or memory networks. Alternatively, a pragmatic tip: if you are using a neural
network toolbox, try to process your data to have similar properties to the standard datasets
that are usually used to demonstrate that software. For example, similar dimensionality,
means, variances, sparsity (number of non-zero features). Then any initialization tricks that
the demonstrations use are more likely to carry over to your setting.

2 Local optima
The cost function for neural networks is not unimodal, and so is certainly not convex (a
stronger property). We can see why by considering a neural network with two hidden units.
Assume we’ve fitted the network to a (local) optimum of a cost function, so that any small
change in parameters will make the network worse. Then we can find another parameter
vector that will represent exactly the same function, showing that the optimum is only a
local one.

To create the second parameter vector, we simply take all of the parameters associated
with hidden unit one, and replace them with the corresponding parameters associated with
hidden unit two. Then we take all of the parameters associated with hidden unit two and
replace them with the parameters that were associated with hidden unit one. The network is
really the same as before, with the hidden units labelled differently, so will have the same
cost.

1. Adam (https://arxiv.org/abs/1412.6980) has now been popular for some time, although pure SGD is still in
use too.
2. https://www.inf.ed.ac.uk/teaching/courses/mlp/2019-20/lectures/mlp06-enc.pdf

MLPR:w8c Iain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/ 1

http://www.jmlr.org/proceedings/papers/v9/glorot10a.html
http://www.jmlr.org/proceedings/papers/v9/glorot10a.html
https://arxiv.org/abs/1412.6980
https://www.inf.ed.ac.uk/teaching/courses/mlp/2019-20/lectures/mlp06-enc.pdf
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/


Models with “hidden” or “latent” representations of data, usually have many equivalent
ways to represent the same model. When the goal of a machine learning system is to make
predictions, it doesn’t matter whether the parameters are well-specified. However, it’s worth
remembering that the values of individual parameters are often completely arbitrary, and
can’t be interpreted in isolation.

In practice local optima don’t just correspond to permuting the hidden units. Some local op-
tima will have better cost than others, and some will make predictions that generalize better
than others. For small neural networks, one could fit many times and use the network that
cross-validates the best. However, researchers pushing up against available computational
resources will find it difficult to optimize a network many times.

One advantage of large neural networks is that fitting far more parameters than necessary
tends to work better(!). One intuition is that there are many more ways to set the parameters
to get low cost, so it’s less hard to find one good setting.3 Although it’s difficult to make
rigorous statements on this issue. Understanding the difficulties that are faced in really
high-dimensional optimization is an open area of research. (For example, https://arxiv.
org/abs/1412.6544.)

3 Regularization by early stopping
We have referred to complex models that generalize poorly as “overfitted”. One idea to avoid
“overfitting” is to fit less! That is, stop the optimization routine before it has found a local
optimum of the cost function. This heuristic idea is often called “early stopping”.

The most common way to implement early stopping is to periodically monitor performance
on a validation set. If the validation score is the best that we have seen so far, we save a
copy of the network’s parameters. If the validation score fails to improve upon that cost over
some number of future checks (say 20), we stop the optimization and return the weights
we’ve saved.

David MacKay’s textbook mentions early stopping (Section 39.4, p479). This book points
out that stopping the optimizer prevents the weights from growing too large. Goodfellow
et al.’s deep learning textbook (Chapter 7) makes a more detailed link to L2 regularization.
MacKay argued that adding a regularization term to the cost function to achieve a similar
effect seems more appealing: if we have a well-defined cost function, we’re not tied to a
particular optimizer, and it’s probably easier to analyse what we’re doing.

However, I’ve found it hard to argue with early stopping as a pragmatic, sensible procedure.
The heuristic directly checks whether continuing to fit is improving predictions for held-out
data, which is what we care about. And we might save a lot of computer time by stopping
early. Moreover, we can still use a regularized cost function along with early stopping.

Questions: These questions don’t relate to early stopping, but seemed natural to ask after
the video above, which had some more general review:

• [The website version of this note has a question here.]

• [The website version of this note has a question here.]

4 Regularization corrupting the data or model
There are a whole family of methods for regularizing models that involve adding noise to
the data or model during training. As with early-stopping, it can be hard to understand
what objective we are fitting, and the effect of the regularizer can depend on which optimizer
we are using. However, these methods are often effective. . .

3. The high-level idea is old, but a recent (2018) analysis described the idea that some parts of a large network
“get lucky” and identify good features as “The Lottery Ticket Hypothesis”, https://arxiv.org/abs/1803.03635

MLPR:w8c Iain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/ 2

https://arxiv.org/abs/1412.6544
https://arxiv.org/abs/1412.6544
https://www.inference.org.uk/itila/book.html
https://www.deeplearningbook.org/contents/regularization.html
https://arxiv.org/abs/1803.03635
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/


Adding Gaussian noise to the inputs of a linear model during gradient training has the
same average effect as L2 regularization4. We can also add noise when training neural
networks. The procedure will still have a regularization effect, but one that’s harder to
understand. We can also add noise to the weights or hidden units of a neural network.
In some applications, adding noise has worked better than optimizing easy-to-define cost
functions (like L2 regularizers).

Other regularization methods randomly replace some of the weights with zeros (“drop-
out”5) or features with zeros (such as in “denoising auto-encoders”6 or a 2006 feature-
dropping regularizer). These heuristics prevent the model from fitting delicate combinations
of parameters, or fits that depend on careful combinations of features. If used aggressively,
“masking noise” makes it hard to fit anything! Often large models are needed when using
these heuristics.

5 Further Reading
Most textbooks are long out-of-date when it comes to recent practical wisdom on fitting
neural networks and regularization strategies. However, https://www.deeplearningbook.
org/ is still fairly recent, and is a good starting point. The MLP notes are also more detailed
on practical tips for deep nets.

If you were to read about one more trick, perhaps it should be Batch Normalization (or “batch
norm”), which is (just) “old” enough to be covered in the deep learning textbook. Like most
ideas, it doesn’t always improve things, so experiments are required. And variants are still
being actively explored.

The discussion in this note about initialization pointed out that we don’t want to saturate
hidden units. Batch normalization shifts and scales the activations for a unit across a training
batch to have a target mean and variance. Gradient-based training of the neural nets often
then works better. In hindsight it’s surprising amazed that this trick is so recent: it’s a simple
idea that someone could have come up with in a previous decade, but didn’t.

4. Non-examinable: there’s a sketch in these slides: https://www.cs.toronto.edu/~tijmen/csc321/slides/
lecture_slides_lec9.pdf. More detail in Bishop’s (1995) neural network textbook, section 9.3.
5. https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
6. http://icml2008.cs.helsinki.fi/papers/592.pdf

MLPR:w8c Iain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/ 3

https://people.csail.mit.edu/gamir/pubs/fdrop_camera_postfix.pdf
https://people.csail.mit.edu/gamir/pubs/fdrop_camera_postfix.pdf
https://www.deeplearningbook.org/
https://www.deeplearningbook.org/
http://www.jmlr.org/proceedings/papers/v37/ioffe15.html
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec9.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec9.pdf
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
http://icml2008.cs.helsinki.fi/papers/592.pdf
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/

	 Initialization
	 Local optima
	 Regularization by early stopping
	 Regularization corrupting the data or model
	 Further Reading

