
Neural networks introduction
We’ve seen that we can get a long way with linear models, and generalized linear models
(linear models combined with a non-Gaussian observation model).

Linear models are still widely used, and should still be implemented as baselines, even if
you’re convinced you need something more complicated. However, making a linear model
work well might require some insight into how to transform the inputs and outputs (“feature
engineering”). You can think of neural networks1 as linear models with additional parts,
where at least some of the feature transformations can also be learned.

Parameters are fitted for a series of stages of computation, rather than just the weights for a
single linear combination. The benefit of neural networks over linear models is that we can
learn more interesting functions. But fitting the parameters of a neural network is harder:
we might need more data, and the cost function is not convex.

1 We’ve already seen a neural net, we just didn’t fit it
We’ve already fitted non-linear functions. We simply transformed our original inputs x into
a vector of basis function values φ before applying a linear model. For example we could
make each basis function a logistic sigmoid:

φk(x) = σ((v(k))>x + b(k)), (1)

and then take a linear combination of those to form our final function:

f (x) = w>φ(x) + b, or f (x) = σ(w>φ(x) + b). (2)

Here I’ve chosen to put in bias parameters in the final step, rather than adding a con-
stant basis function. This function is a special case of a “neural network”. In particular a
“feedforward (artificial) neural network”, or “multilayer perceptron” (MLP).

The function has many parameters θ = {{v(k), b(k)}K
k=1, w, b}. What would make it a neural

network is if we fit all of these parameters θ to data. Rather than placing basis functions by
hand, we pick the family of basis functions, and “learn” the locations and any other parame-
ters from data. A neural network “learning algorithm”, is simply an optimization procedure
that fits the parameters to data, usually (but not always) a gradient-based optimizer that
iteratively updates the parameters to reduce their cost. In practice, optimizers can only find
a local optimum, and in practice optimization is usually terminated before convergence to
even a local optimum.

2 Some neural network terminology, and standard processing layers
In the language of neural networks, a simple computation that takes a set of inputs and
creates an output is called a “unit”. The basis functions in our neural network above are
“logistic units”. The units before the final output of the function are called “hidden units”,
because they don’t correspond to anything we observe in our data. The feature values
{x1, x2, . . . xD} are sometimes called “visible units”.

In the neural network model above, the set of φk basis functions all use the same inputs x,
and all of the basis function values go on together to the next stage of processing. Thus these
units are said to form a “layer”. The inputs {x1, x2, . . . xD} also form a “visible layer”, which
is connected to the layer of basis functions.

1. Here I am talking about the simplest “feed-forward” neural networks.

MLPR:w8a Iain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/ 1

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/


The layers in simple feed-forward neural networks apply a linear transformation, and then
apply a non-linear function element-wise to the result. To compute a layer of hidden values
h(l) from the previous layer h(l−1):

h(l) = g(l)(W(l)h(l−1) + b(l)), (3)

where each layer has a matrix of weights W(l), a vector of biases b(l), and uses some
non-linear function g(l), such as a logistic sigmoid: g(l)(a) = σ(a); or a Rectified Linear
Unit (ReLU): g(l)(a)=max(0, a).2 The input to the non-linearity, a, is called an activation. If
we didn’t include non-linearities there wouldn’t be any point in using multiple layers of
processing (see the week 2 question sheet).

We can define h(0) = x, so that the first hidden layer takes input from the features of our
data. Then we can add as many layers of processing we like before the final layer, which
gives the final output of our function.

Implementing the function defined by a standard neural network is very little code! A
sequence of linear transformations (matrix multiplies and maybe the addition of a bias
vector), and element-wise non-linearities.

3 Why is it called a neural network?
[If you’re short of time, skip this section, and go straight to check your understanding]

Why is it called a neural network? The term neural network is rooted in these models’
origins as part of connectionism — models of intelligent behaviour that are motivated by how
processes could be structured, but usually abstracted far from the biological details we know
about the brain. An accurate model of neurons in the brain would involve large sets of
stochastic differential equations; not smooth, simple, deterministic functions.

There is some basis to the neural analogy. There is electrical activity within a neuron. If a
voltage (“membrane potential”) crosses a threshold, a large spike in voltage called an action
potential occurs. This spike is seen as an input by other neurons. A neuron can be excited
or depressed to varying degrees by other neurons (it weights its inputs). Depending on the
pattern of inputs to a neuron, it too might fire or might stay silent.

In early neural network models, a unit computed a weighted combination of its input, w>x.
The unit was set to one if this weighted combination of input spikes reached a threshold
(the unit spikes), and zero otherwise (the unit remains silent). The logistic function φk(x)
is a ‘soft’ version of that original step function. We use a differentiable version of the step
function so we can fit the parameters with gradient-based methods.

4 Check your understanding
Before your discussion group: Try writing a Python function that evaluates a random neural
network function — a neural network function with randomly sampled weights.

[The website version of this note has a question here.]

With your discussion group: Explore how choices defining the distribution over functions
affects the typical functions you see.

Things you could try include:

2. A natural question from keen students at this point is: “what non-linearity should I use?”. As with many
questions in machine learning, the answer is “it depends” and “we don’t know yet”. ReLUs (named after Relu
Patrascu, a friendly sysadmin at the University of Toronto) replaced logistic sigmoids in generic hidden layers
of many neural networks as being easy to fit. However, now I would always use a PReLU instead, which have
worked better in cases I’ve tried. There are several other variants, including GELUs, SELUs. The small differences
between these non-linearities don’t tend to be where big advances come from. Fully differentiable non-linearities
like soft-plus log(1 + ea), which looks like a ReLU, will make some optimizers happier. Logistic sigmoids are still
useful as switches, used in mixtures of experts, LSTMs, and adapting models. Although some of this work is
theoretically motivated, what cross-validates the best is what ultimately wins in practice.

MLPR:w8a Iain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/ 2

w2q_assignment.html#maths-linear-regression
https://en.wikipedia.org/wiki/Connectionism
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Action_potential
https://en.wikipedia.org/wiki/Action_potential
https://icml.cc/Conferences/2010/papers/432.pdf
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1706.02515
https://arxiv.org/abs/1701.06538
https://en.wikipedia.org/wiki/Long_short-term_memory
https://www.research.ed.ac.uk/portal/files/25128271/lhuc_final_taslp16.pdf
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/


• Sample weights with different standard deviations, e.g., 0.1 and 10.

• Try sampling weights from uniform np.random.rand.

• Try removing the non-linearities: setting g(a) = a, in every layer.

• Try using ReLUs: g(a) = max(a, 0).

• Try changing the number of layers.

• Try adding in randomly sampled biases.

Empirically, what choices encourage/discourage typical functions from being complicated,
that is (in 1-dimension) having at least several turning points? Can you create priors over
functions that look different to those when you sample from a Gaussian process? If so, how
are they different? Did you notice any interactions between the choices?

5 Further reading
Bishop’s introduction to neural networks is Section 5.1. Bishop also wrote another book,
published in 1995: Neural Networks for Pattern Recognition. Despite being 25 years old, and so
missing out on more recent insights, it’s still a great introduction!

MacKay’s textbook Chapter 39 is on the “single neuron classifier”. The classifier described in
this chapter is precisely logistic regression, but described in neural network language. Maybe
this alternative view will help.

Murphy’s quick description of Neural Nets is in Section 16.5, which is followed by a literature
survey of other variants.

Theoretical Neuroscience (Dayan and Abbott) has more detail about biological neural networks
and theoretical models of how they learn.

MLPR:w8a Iain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/ 3

https://www.gatsby.ucl.ac.uk/~dayan/book/
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/

	 We've already seen a neural net, we just didn't fit it
	 Some neural network terminology, and standard processing layers
	 Why is it called a neural network?
	 Check your understanding
	 Further reading

