
Bayesian inference and prediction

The previous note introduced a probabilistic model for regression. Nothing changed when
we did maximum likelihood: we still did least squares. However, Bayesian inference on this
model reveals how uncertain we are about the underlying model. We no longer fit a single
model, instead we constructed a distribution over all possible models. Now we’ll look at
how to use that distribution. But first, a simple concrete prediction problem as a work-up
exercise.

1 A toy prediction problem
Before reading this section, you should watch the video.

Consider a card game with 3 cards, each with two sides: Card 1 has one white and one black
side, card 2 has two black sides, and card 3 has two white sides.

The cards are shuffled and then turned over randomly. One card is selected, way-up uni-
formly at random and placed on a table.

Question1: You see a black side. What is the probability that the other side of the same card
is white?

P(x2=W | x1=B) = 1/3, 1/2, 2/3, other? (1)

Hopefully the process by which a card is selected should be clear: P(c) = 1/3 for c = 1, 2, 3,
and the side you see first is chosen at random: e.g., P(x1=B | c=1) = 0.5.

Many people get this puzzle wrong on first viewing (it’s easy to mess up). Although
regardless of whether the answer is obvious or not, it’s a simple example on which to
demonstrate some formalism.

When first trying to use probabilities for prediction problems, you might find yourself going
in circles using Bayes’rule:

P(x2=W | x1=B) =
P(x1=B | x2=W) P(x2=W)

P(x1=B)
(2)

The boxed term is no more obvious than the answer! Bayes’ rule can’t be used blindly
to obtain any conditional probability. It is used specifically to ‘invert’ processes that we
understand. The first step to solve inference problems is to write down a model of the data.

A model of the card game states that we first picked one of the three cards uniformly at
random:

P(c) =

{
1/3 c = 1, 2, 3
0 otherwise.

(3)

Then given the card, we picked one of the faces at random:

P(x1=B | c) =


1/2 c = 1
1 c = 2
0 c = 3

(4)

Bayes rule can ‘invert’ this process to tell us P(c | x1 = B). It infers a posterior distribution
over explanations of how we got the data that we observed.

1. This card problem is Ex. 8.10a), MacKay, p142. It is not the same as the famous “Monty Hall” or “three doors”
puzzle (MacKay Ex. 3.8–9). The Monty Hall problem is also worth understanding. Although the card problem is
(hopefully) less controversial and more straightforward. Also fewer students have seen it before and memorized the
answer.
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Inferring the card:

P(c | x1=B) =
P(x1=B | c) P(c)

P(x1=B)
(5)

∝


1/2 · 1/3 = 1/6 c = 1
1 · 1/3 = 1/3 c = 2
0 c = 3

(6)

=

{
1/3 c = 1
2/3 c = 2.

(7)

This unbalanced posterior distribution over cards doesn’t match some people’s intuition.
“Aren’t there two possible cards given a black side, so it’s 50–50?”. While there are two
possible cards, the likelihood for one of these options is 2× larger. Analogy: Your friend picks
a dice at random from a 6-sided dice, a 10-sided dice and a 100-sided dice. He rolls the dice
and tells you he got an 8. You know it’s not the 6-sided dice, so there are two options, the
10-sided dice or the 100-sided dice. But the 10-sided dice is more likely.

We can now spot the answer to the card problem. The other side will be white only if it’s
card 1, and we have now computed the probability representing our belief that we’re looking
at card 1. For more complex problems we want a more mechanical approach.

The probability for predicting the next outcome that we want is P(x2 | x1 = B). We need
to introduce the card c into the maths, so that we can use our model and its posterior
distribution. We use the sum rule to introduce the card choice c as a dummy variable, and
then split up the joint probability with the product rule:

P(x2 | x1=B) = ∑
c∈1,2,3

P(x2, c | x1=B) (8)

= ∑
c∈1,2,3

P(x2 | x1=B, c) P(c | x1=B). (9)

This equation says that we consider each of the predictions that we would make if we knew
the card, and weight each prediction by the posterior probability of that card. (And adding
up the options we get 1/3.)

2 General strategy for solving prediction problems:
When we want to predict some quantity y, we often find that we can’t immediately write
down mathematical expressions for P(y |data).

So we introduce “stuff” z, model parameters and/or latent variables, that helps us define
the problem, by using the sum rule:

P(y |data) = ∑
z

P(y, z |data). (10)

If the stuff is real-valued, we’ll have an integral over a PDF instead of a sum over probabilities.
Either way, we split up the joint probability using the product rule:

P(y |data) = ∑
z

P(y | z, data) P(z |data). (11)

If we would know how to predict y if we were told the extra stuff z, we can find the predictive
distribution: weight the predictions for each possible stuff, P(y | z, data), by the posterior
probability of the stuff, P(z |data). We get the posterior from Bayes’ rule.

Sometimes the extra stuff summarizes everything we need to know to make a prediction:
P(y | z, data) = P(y | z). Although not in the card game example above.

Not everyone believes the answer to the card game question. Sometimes probabilities are
counter-intuitive.

[The website version of this note has a question here.]
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3 Predictions for Bayesian linear regression
Compared to the statistics literature, the machine learning literature places a greater emphasis
on prediction than inferring unknown parameters. Here we explore how to make a Bayesian
prediction given a posterior over the parameters.

The prediction of an unknown output y at a test location x is expressed as a probability
distribution. We condition on training data D = {x(n), y(n)}. We want to refer to our model,
in particular its regression weights, so we introduce them using the sum rule:

p(y | x,D) =
∫

p(y, w | x,D) dw. (12)

Then we split up the joint probability using the product rule:

p(y | x,D) =
∫

p(y | x, w) p(w | D) dw. (13)

Here the first term isn’t conditioned on the data, because if we know the parameters, the
data doesn’t help make the prediction. The second term isn’t conditioned on the test input
location, because we assume the test location doesn’t tell us anything about the weights2.

What are the probabilities in this integral? As explained in the previous note, the posterior
over the weights is Gaussian for a linear regression model with Gaussian noise. Following
Murphy’s notation, we’ll write:

p(w | D) = N (w; wN , VN), (14)

where wN is the posterior mean after observing N datapoints, and VN is the posterior covari-
ance. The other term in the integrand is the predictive distribution for known parameters.
That is, a Gaussian with noise variance σ2

y centred around the function value for the test
input:3

p(y | x, w) = N (y; w>x, σ2
y ). (15)

So now we ‘just’ need to do the integral and we have our answer.

Only a little probability theory is needed for Bayesian inference and prediction in this course:
just the sum and product rule. We follow the rules in the general strategy above. However,
actually solving the sums or integrals required is usually hard.

Linear and Gaussian models are one of the rare cases where we can do the integrals in
closed form. Multiplying the terms in the integrand together, and carefully tracking terms
we can factor out a Gaussian in w that integrates to 1. A Gaussian in y remains. It’s some
work, but can be done.

Anticipating that our predictive distribution is Gaussian, we can look for an easier way to
identify its mean and variance. The test output is a noisy version of the underlying function:

y = f (x) + ν = x>w + ν, ν ∼ N (0, σ2
y ). (16)

The function value is a linear transformation of the weights, so our beliefs about the function
value are Gaussian distributed with mean:

µ f = E[x>w] = x>wN (17)

and variance4

var[ f ] = x>VNx, (18)

2. There are transductive learning systems that do base inferences on the locations of test inputs.
3. We’re assuming that the noise level σ2

y is part of our general background knowledge. We won’t consider different
values or infer σ2

y in this note, so we haven’t bothered to explicitly condition on it in any of the probabilities.
4. var[ f ] = E[( f − µ f )( f − µ f )] = E[x>(w−wN)(w−wN)

>x] = x>cov[w]x
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where wN and VN are the mean and the covariance of the posterior p(w | D). So our belief
about the function value is:

p( f | D, x) = N ( f ; x>wN , x>VNx). (19)

Adding Gaussian noise, our belief about a new output is also Gaussian. The independent
zero mean noise doesn’t change the mean, but adds σ2

y to the variance:

p(y | D, x) = N (y; x>wN , x>VNx + σ2
y ). (20)

This answer matches the answer quoted for the integral by Murphy.

[The website version of this note has a question here.]

4 Decision making
Given a test input x, the Bayesian approach says that we don’t know what the output y will
be, and so doesn’t return a single value. However, in most prediction competitions (such
as a Kaggle competition, but not always5) we need to provide a point-estimate or guess of
the output, ŷ. In real-world applications, we need to make decisions. Usually each guess
or decision should be chosen to minimize our expected loss, then over many guesses our
average performance will be good.

For a given application we need to write down a loss function L(y, ŷ). The loss says how
bad it is to guess ŷ if the actual output is y. Our expected loss given training data D give us
our cost function:

c = Ep(y | x,D)[L(y, ŷ)] =
∫

L(y, ŷ) p(y | x,D) dy. (21)

For square loss, L(y, ŷ) = (y− ŷ)2, we can differentiate the cost with respect to our point-
estimate:

∂c
∂ŷ

= Ep(y | x,D)[−2(y− ŷ)] = −2(Ep(y | x,D)[y]− ŷ). (22)

Setting the derivative to zero, the optimal guess is the posterior mean, ŷ = Ep(y | x,D)[y]. For
Bayesian linear regression with a Gaussian prior and noise model, it can be shown that the
posterior mean corresponds to using an L2 regularized model. If all we care about is mean
squared error, the Bayesian approach doesn’t change what we do.

However, the uncertainty can still be useful. If we identify predictions that are uncertain, it
could warn us to manually intervene, or gather data relevant to those cases. That is, making
a single point estimate is often not the only decisions we make based on a model. Moreover,
in real-world applications, sensible loss functions are often asymmetric.

Imagine that a bakery makes an estimate ŷ of tomorrow’s bread sales y. If it were possible
to make perfect predictions, so we knew that ŷ=y, then we would bake exactly ŷ loaves of
bread. We’d sell all our bread, and send no customers away. Sadly we can’t make perfect
predictions. If we really don’t like throwing bread away, then we could set ŷ smaller than the
average possible value of y. In that case, we would sell out nearly every day. Most bakers
seem to attach a different loss to waste, and make decisions that regularly result in throwing
bread away6.

As another example, a business-to-business supplier of non-perishable goods will pay
warehouse fees to keep excess stock, if failing to fulfill orders will lose customers in the
long term. For them, the cost of underestimating sales is much higher than the cost of
overestimating.

5. https://link.springer.com/chapter/10.1007/11736790_1
6. Or if more responsible, they find someone to take the bread who wouldn’t purchase it anyway.
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The Bayesian approach separates modelling data from the application-specific loss function
by keeping track of multiple possibilities for the model, and deferring making a decision
until later. Multiple decisions, with different losses, can be made from the same model. An
alternative and popular approach, “empirical risk minimization”, fits a model function to
the training data to directly optimize an application-specific loss function.7

5 Further Reading
Bishop covers prediction for Bayesian linear regression in Section 3.3.2 and Figure 3.8, and
Murphy in Section 7.6.2 and Figure 7.12.

Bishop Section 1.5.5, Murphy Section 5.7–, and MacKay Chapter 36 (p451), have more detail
on Bayesian decision making.

6 Check your understanding
MacKay’s book has more toy prediction exercises like the card game: Ex. 3.12 and 3.14, p58.
You might have intuitive answers, but try to solve them mechanically by writing down an
explicit model and applying rules of probability.

7 More detail for those who love linear algebra
A brute force way to get the predictive distribution for linear regression is to write the
integrand as a joint distribution, as a standard multivariate Gaussian using block matrices:

p(w, y | x,D) = N
([

w
y

]
;
[

wN
m

]
,
[

VN Σw,y
Σy,w r2

])
. (23)

Written in this form, the marginal mean and variance of y are immediately available, and
we’d write p(y | x,D) = N (y; m, r2). But if you find that intimidating, we agree! Examining
the quadratic form involving y and w in the joint distribution gives us the joint inverse
covariance, and we need to do quite a few lines of linear algebra to identify m = x>wN and
r2 = x>VNx + σ2

y . That seems like a lot of work. Sources like the matrix cookbook can help.
But in this case there was an easier way.

7. Warning: You will find dogmatic advocacy for each of these approaches over the other. As usual, the optimal
decision depends upon the circumstances.
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