
Training, Testing, and Evaluating Different
Models
You now have enough knowledge to be dangerous. You could read some data into ma-
trices/arrays in a language like Matlab or Python, and attempt to fit a variety of linear
regression models. They may not be sensible models, and so the results may not mean very
much, but you can do it.

You could also use more sophisticated and polished methods baked into existing software.
Many Kaggle competitions are won using easy-to-use and fast gradient boosting methods
(such as XGBoost, LightGBM, or CatBoost), or for image data using ‘convolutional neural
nets’, which you can fit with several packages, for example Keras.

How do you decide which method(s) to use, and work out what you can conclude from the
results?

1 Baselines
It is almost always a good idea to find the simplest possible algorithm that could possibly
give an answer to your problem, and run it. In a regression task, you could report the
mean square error of a constant function, f (x)=b. If you’re not beating that model on your
training data, there is probably a bug in your code. If a fancy method does not generalize to
new data as well as the baseline, then maybe the problem is simply too hard. . . or there are
more subtle bugs in your code.

It is also usual to implement stronger baselines. For example, why use a neural network if
straight-forward linear regression works better? If you are proposing a new method for an
established task, you should try to compare to the existing state-of-the art if possible. (If a
paper does not contain enough detail to be reproducible, and does not come with code, they
may not deserve comparison.)

I’ve heard the following piece of advice for finding a machine learning algorithm to solve a
practical problem1:

‘‘Find a recent paper at a top machine learning conference, like NeurIPS or ICML that’s
on the sort of task you need to solve. Look at the baseline that they compare their method
to. . . and implement that.”

If they used a method for comparison, it should be somewhat sensible, but it’s probably a
lot simpler and tested than the new method. And for many applications, you won’t actually
need this year’s advance to achieve what you need.

[The website version of this note has a question here.]

2 Training and Test Sets and Generalization Error
We may wish to compare a linear regression model, f (x; w, b) = w>x + b, to a constant
function baseline f (x; b) = b. The linear regression model can never be beaten on the training
data by the baseline, even if the data are random noise. The models are nested: linear
regression can become the simpler model by setting w=0, and obtain the same performance.
Then there will almost always be some way to set w 6=0 to improve the square error slightly.

Thus we cannot use the performance on a training set to pick amongst models. The most
complicated model will usually win, and it will always win if the models are nested. Yet

1. I wish I knew who to credit. The “quote” given is a paraphrase of something I’ve heard in passing.

MLPR:w2a Iain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/ 1

https://www.kaggle.com/
https://dmlc.cs.washington.edu/xgboost.html
https://github.com/microsoft/LightGBM
https://catboost.ai/
https://keras.io/
https://neurips.cc/
https://icml.cc/
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/


in the previous note we saw how dramatically bad the fit can be from models with many
parameters.

Instead, we could compare our model to a baseline on new data that wasn’t used when
fitting or training the model. This held-out data is usually called a test set. The test set is
used to report the error that the model achieves when generalizing to new data, and should
only be used for that purpose.

Formally, the generalization error, is the average error or loss that the model function f would
achieve on future test cases coming from some distribution p(x, y):

Generalization error = Ep(x,y)[L(y, f (x))] =
∫

L(y, f (x)) p(x, y) dx dy, (1)

where L(y, f (x)) is the error we record if we predict f (x) but the output was actually y. For
example, if we care about square error, then L(y, f (x)) = (y− f (x))2.

We don’t have access to the distribution of data examples p(x, y). If we did, we wouldn’t
need to do learning! However, we might assume that our test set contains M samples from
this distribution. (That’s a big assumption, which is usually wrong, because the world will
change, and future examples will come from a different distribution.) Given this assumption,
an empirical (observed) average can be used as what’s called a Monte Carlo estimate of the
formal average in the integral above:

Average test error =
1
M

M

∑
m=1

L(y(m), f (x(m))), x(m), y(m) ∼ p(x, y). (2)

If the test items really are drawn from the distribution that we are interested in, the expected
value of the test error is equal to the generalization error. (Check you can see why.) That
means it’s what’s called an unbiased estimate: sometimes it’s too big, sometimes to small, but
on average our estimate is correct.

3 Validation or Development sets
VIDEO 2020-09-26_18-38-08_train_val_test_sets

We often have many different models that we could consider fitting, and would like to use
the one that generalizes the best. These models are often variants of the same model, but
with different choices or “hyperparameters”. For example, we can construct different linear
regression models by specifying different basis functions (the φ function) and regularization
constants λ.

We shouldn’t evaluate all of these alternative models on the test set. Selecting a model from
many variants often picks a model that did well by chance, and its performance on future
data is often lower than on the data used to make the choice. For example, if we test a set
of models with different regularization constants λ and select the model with the best test
performance, we have fitted the parameter λ to the test set. However, the test set is meant for
evaluation, and should be held-out from all procedures that make choices about a model.

Instead we should split the data that’s not held out for testing into a training set and a
validation set. We fit the main parameters of a model, such as the weights of a regression
model, on the training set. Different variants of the model, perhaps with different regular-
ization parameters, are then evaluated on the validation set to see which settings seem to
generalize best. Finally, to report how well the selected model is likely to do on future data,
it is evaluated on the test set. We should not evaluate many alternatives on the test set.

Example: the plot below shows some polynomial fits to some training data (blue crosses)
with different degrees p. The quadratic curve (p = 2) is underfitting, and the 9th order
polynomial is showing clear signs of overfitting.

MLPR:w2a Iain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/ 2

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/


x, input

y,
 o

ut
pu

t

 

 
valid.
p=2
p=5
p=9
train

The red dots are validation data: held out points that weren’t used to fit the curves. Training
and validation errors were then plotted for polynomials of different orders:

0 5 10 15
0

5

10

p, polynomial order

M
ea

n 
sq

ua
re

 e
rr

or

 

 
validation
train

As expected for nested models, the training error falls monotonically as we increase the
complexity of the model. However, the fifth order polynomial has the lowest validation error,
so we would normally pick that model. Looking at the validation curve, the average error
of the fourth to seventh order polynomials all seem similar. If choosing a model by hand, I
might instead pick the simpler fourth order polynomial.

[The website version of this note has a question here.]

4 What to report
After choosing our final model, we evaluate and report its test error. We would normally also
report the test error on a small number of reference models to put this number in context:
often a simple baseline of our own, and/or a previously-reported state-of-the-art result.
We don’t evaluate other intermediate models (with different model sizes or regularization
constants) on the test set!

It is often also useful to report training and validation losses, which we can safely report
for more models. Researchers following your work can then compare to your intermediate
results during their development. If you only give them a test performance, other researchers
will be tempted to consult the test performance of their own systems early and often during
development.

It can also be useful to look at the training and validation losses during your own model
development. If they’re similar, you might be underfitting, and you could consider more
complicated models. If the training score is good, but the validation score is poor, that could
be a sign of overfitting, so you could try regularizing your model more.

We usually report the average loss on each of the training, validation and test sets, rather than
the sum of losses. An average is usually more interpretable as the ‘typical’ loss encountered
per example. It is also easier to compare training and validation performance using average
errors: because the sets have different sizes, we wouldn’t expect the sum of losses to be
comparable.

MLPR:w2a Iain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/ 3

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/


The validation and test errors, as estimates of generalization error, shouldn’t include a
regularization term (such as λw>w, see previous note). Therefore, for comparison, “training
error” usually shouldn’t include a regularization term either, even if the cost function being
optimized does. On the other hand, there are times when it makes sense to report regularized
costs, such as when monitoring convergence during model fitting (in methods we’ll consider
later), or checking that nested models have the expected ordering of training costs.

[The website version of this note has a question here.]

5 Some detail on splitting up the data
How should we split up our data into the different sets? You might see papers that use (for
example) 80% of data for training, 10% for validation, and 10% for testing. There’s no real
justification for using any fixed set of percentages, but it’s likely that no one would question
such a split. What we really want to do is use as much data for training as possible, so that
we can fit a good model.2 We are limited by the need to leave enough data for validation
and testing to choose models and report model performance. Deciding if we have enough
validation/test data would require inspecting “error bars” on our estimates, which we’ll
cover in a later note.

Given that we want to use as much data for training as possible, we could consider combining
our training and validation sets after making model choices (basis functions, regularization
constants, etc.) and refit. I’d probably try that sort of trick if trying to win a competition, but
usually avoid retraining on validation data in my research. Reason 1: If comparing to other
work that uses a particular train/validation split, I try to follow their protocols. I don’t want
to just get good numbers: I want a controlled comparison between models, so I can show
that my numbers are better because of interesting differences between models. If I’m the first
to work on a dataset, I also don’t want to create complicated, expensive protocols for others
to follow. Reason 2: for models like neural nets, where an optimizer can find parameters in
different regions on every run, I might be unlucky when refitting and fit a worse model. If I
don’t have any held out data, I won’t notice.

6 K-fold cross-validation
A more elaborate procedure called K-fold cross-validation is appropriate for small datasets,
where holding out enough validation data to select model choices leaves too little data for
training a good model. The data that we can fit to is split into K parts. Each model is fitted K
times, each with a different part used as a validation set, and the remaining K−1 parts used
for training. We select the model choices with the lowest validation error, when averaged
over the K folds. If we want a model for prediction, we then might refit a model with those
choices using all the data.

Making statistically rigorous statements based on K-fold cross-validation performance is
difficult. (Beyond this course, and I believe an open research area.)

If there’s a really small dataset, a paper might report a K-fold score in place of a test set
error. In your first project in machine learning, I would try to avoid following such work.
To see some of the difficulties, imagine I want to report how good a model class is (e.g., a
neural network) compared to a baseline (e.g., linear regression) for some task. But the data I
have to do the comparison is small, so I report an average test performance across K-folds,
each containing a training and test set.

What do I do within each fold? Assume I need to make a model choice or choose a
“hyperparameter” for each model class, such as the L2 regularization constant λ. As we have
already seen, we can’t fit such choices to the training data. But fitting them to the test data

2. In the toy example above, we artificially used a small fraction of the data for training, so that we’d quickly get
overfitting for demonstration purposes.

MLPR:w2a Iain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/ 4

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/


would be cheating. I could split off a validation set from the training data. But the dataset is
small, so the validation scores would be noisy. So maybe I run K-fold cross-validation to
pick the regularization constant.

The above paragraph was talking about being within a particular fold, so I’ll have to do the
K-fold cross-validation to pick the regularizer λ for each of the outer-loop folds that I’m
doing to report test performance.

If you’re not quite following, the take-away message from this part is that doing K-fold
cross-validation carefully can be a confusing and costly mess! While it’s useful for small
datasets, I’d try to avoid it in your first machine learning projects, by finding a problem with
lots of data. Or try to use methods (like the Bayesian methods covered later in the course)
that can deal with hyperparameters without the need for separate validation sets. If you
do need to understand the ideas in this section better, you could search for “nested K-fold
cross-validation”.

7 Not fitting the validation and test sets
In the simplest “textbook” prediction setting, we fit a function f (x; w) to the training set
only. We should then be able to apply that function to individual inputs x in future, giving
predictions. In this setting, your code shouldn’t gather any statistics across the whole
validation or test set before making predictions. For example it’s common to center data, by
subtracting the mean training input from every input. You can view this shift as part of the
function, so if you want to apply the function consistently, you should apply the same shift
in future (don’t use the mean of the validation or test inputs).

There are settings beyond this course (like “transductive learning”) that look at the valida-
tion/test inputs, and it is sometimes a good idea if you know what you are doing. However,
your experiments will be simpler if you don’t use any aspect of the validation or test sets to
define your function, and it will be easier to interpret your results.

Under no circumstances should your prediction code see the test labels!

7.1 Warning: Don’t fool yourself (or make a fool of yourself)

It is surprisingly easy to accidentally overfit a model to the available test data, and then
generalize poorly on future data. For example, someone may have followed good practice
for all of their analysis, but then the final test score is disappointing. They then realize that
there was something they should probably have done differently, so they change that and
try again. Then they have another realization, but after that change the test score gets worse,
so they revert that change. . . and so on.

Each minor re-run of a method, or peek at the test set, doesn’t seem like it could cause any
problems individually. But the effects build up. These problems with accidental overfitting
are frequently seen on Kaggle. Their competitions display a public leaderboard, based on
a test set, but the final rankings are based on a second test set. It is common for some
competitors to fall many places when the leaderboard is re-ranked. One such competitor
(Greg Park) wrote a reflective blog post on how they had fooled themselves. Despite knowing
about cross-validation and the dangers of overfitting, they slowly but surely slipped into
fitting the test set. They reached second place on the public leaderboard, but fell dramatically
when it was re-ranked. . . embarrassingly beneath one of the available baselines.

Training on the test set is one of the worst mistakes you can make in machine learning. At
best, the results you present will be misleading, and at worst they will be meaningless.
Markers of dissertation projects are likely to penalize such poor practice severely. In your
own projects, if you can3, I suggest holding out some data that you never look at during
the bulk of your research. Pretend it doesn’t exist. Then right at the end, test only the
most-interesting models on the totally-held out test set.

3. Sometimes this best practice is hard to realize.

MLPR:w2a Iain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/ 5

https://en.wikipedia.org/wiki/Transduction_%28machine_learning%29
https://www.kaggle.com/
http://gregpark.io/blog/Kaggle-Psychopathy-Postmortem/
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/


8 Limitations of test set errors
Tests on held-out data provide straightforward quantitative comparisons between models.
Based on these comparisons, if done properly, we can be fairly sure how well a model will
generalize to data drawn from the same distribution.

Future data usually won’t be drawn from the same distribution however. The properties of
most systems drift over time. Dealing with these changes is hard, and often ignored. If your
data is explicitly provided as a time-series, it’s usual to select a validation set after all of your
training data and a test set after that. It’s accepted that test performance is likely to be worse
than the validation performance, which will give some estimate of how badly and quickly
a system degrades over time. You could also consider online prediction. Rather than having
separate training and testing phases, you deal with the data in a stream, predicting each
item one at a time in sequence, updating the model with each item after you have predicted
it.

Even for stable systems, test set errors only say how well, under the given distribution,
the models make predictions. A model with low test error does not necessarily reflect the
structure of the real system, and as a result may generalize poorly if used in other ways. For
example, you should be careful about attempting to interpret meaning behind the weights
in a model. Statistics books are full of examples of how various problems (e.g., selection
effects, confounds, and model mismatch) can make you reach completely wrong conclusions
about a system from a model’s fitted parameters.4

9 Check your understanding
• You should check that you actually followed the details in this note. Could you produce

figures like the two illustrating polynomial fits? If not, what do you need to know?

Could you follow the same idea to pick a L2 regularizing constant when (for example)
fitting a regression problem with a fixed set of RBF basis functions?

Later in the course, or your career, you might have to explain such a procedure in
English, or pseudo-code. And then you might need to implement it.

• Could you adapt your procedure to fit both a regularizing constant, and a width h
shared by a set of RBF basis functions?

What difficulties do you face as the number of “hyperparameters” (parameters that
control the complexity or structure of your model) that you want to set grows?

Would you have additional difficulties setting separate centres and/or widths for every
RBF (not just because it’s a large number of hyperparameters?)?

10 Further Reading
Bishop’s book Sections 1.1 and 1.3 summarize much of what we’ve done so far.

The following two book sections contain more (optional) details. These sections may assume
some knowledge we haven’t covered yet.

• Barber’s book covers validation and testing in Sections 13.2.1–2.

• Murphy’s book Section 7.5, p225, discusses Ridge regression (L2 regularization) and
Fig 7.8a shows training and test (should be validation) curves for different regulariza-
tion constants.

4. To give one example: Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission
(Caruana et al., SIGKDD 2015) includes a case study where models suggest that having Asthma reduces health-
related risks. This spurious result was driven by selection effects in the data.

MLPR:w2a Iain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/ 6

https://dx.doi.org/10.1145/2783258.2788613
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/


Keen students could read the following book chapter by Amos Storkey: When training and
test sets are different: characterising learning transfer. In Dataset Shift in Machine Learning,
Eds Candela, Sugiyama, Schwaighofer, Lawrence. MIT Press.

11 Aside: what is “overfitting” exactly?
These notes described overfitting as producing unreasonable fits that will generalize poorly,
at the expense of fitting the training data unreasonably closely. Thus, models that are said to
overfit usually have lower training error than ‘good’ fits, yet higher generalization error.

I believe it is hard to crisply define overfitting however. Mitchell’s Machine Learning textbook
(1997, p67) attempts a definition:

‘‘A hypothesis f is said to overfit the data if there exists some alternative hypothesis f ′

such that f has a smaller training error than f ′, but f ′ has a smaller generalization error
than f .”

However, I think almost all models f that are ever fitted would satisfy these criteria! Thus
the definition doesn’t seem useful to me.

If we thought we have enough data to get a good fit to a system everywhere, then we would
expect the training and validation errors to be similar. Thus a possible indication of overfitting
is that the average validation error is much worse than the average training error. However,
there is no hard rule here either. For example, if we know that our data are noiseless, we
know exactly what the function should be at our training locations. It is therefore reasonable
we will get lower error at or close to the training locations than at test locations in other
places.

I have seen people reject a model with the best validation error because it’s “overfitting”,
by which they mean the model had a bigger gap between its training and validation score
than other models.5 Such a decision is misguided. It’s the validation error that gives an
indication of generalization performance, not the difference between training and validation
error. Moreover, it’s common not to have enough data to get a perfect fit everywhere. So
while it’s informative to inspect the training and validation errors, we shouldn’t insist they
are similar.

The reality is that there is no single continuum from underfit models to overfit models, that
passes through an ideal model somewhere in between. I believe most large models will have
some aspects that are overly simplified, yet other aspects that result from an unreasonable
attempt to explain noise in the training items.

While I can’t define overfitting precisely, the concept is still useful. Adding flexibility to
models does often make test performance drop. It is a useful shorthand to say that we will
select a smaller model, or apply a form of regularization, to prevent overfitting.

5. On questioning these people, I’ve found in some cases it’s due to a misinterpretation of Goodfellow et al.’s
excellent Deep Learning textbook, which contains the sentence: “Overfitting occurs when the gap between the
training error and test error is too large.”. Please don’t lock onto this idea naively. There is no controversy that what
we actually want is good test or generalization error!

MLPR:w2a Iain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/ 7

https://homepages.inf.ed.ac.uk/amos/publications/Storkey2009TrainingTestDifferent.pdf
https://homepages.inf.ed.ac.uk/amos/publications/Storkey2009TrainingTestDifferent.pdf
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/

	 Baselines
	 Training and Test Sets and Generalization Error
	 Validation or Development sets
	 What to report
	 Some detail on splitting up the data
	 K-fold cross-validation
	 Not fitting the validation and test sets
	 Warning: Don't fool yourself (or make a fool of yourself)

	 Limitations of test set errors
	 Check your understanding
	 Further Reading
	 Aside: what is ``overfitting'' exactly?

