
Plotting and understanding basis functions
This note encourages you to discover some things about basis functions for yourself, through
some experimentation. If we can’t put maths into code (at least the type of maths in this
course), we don’t understand it. Implementing something forces us to confront every detail.
Looking at special cases in code can also help build intuition.

We start with a quick review of how to plot functions in Python, then plot some different
basis functions, and plot linear regression fits using them.

1 Plotting one-dimensional functions
We can plot one-dimensional functions by evaluating them on a fine grid. Make sure you
have a working python setup, and can run this code to plot the cosine function:

import numpy as np
import matplotlib.pyplot as plt

grid_size = 0.1
x_grid = np.arange(-10, 10, grid_size)
f_vals = np.cos(x_grid)
plt.clf()
plt.plot(x_grid, f_vals, 'b-')
plt.plot(x_grid, f_vals, 'r.')
plt.show() # Not necessary with ipython3 --matplotlib

Please do run the code snippets from these notes since interacting with the notes will help
you to better understand and remember the described concepts.

Our code is not really evaluating the whole function. We just evaluated it at the points
shown by red dots. However, the blue line segments joining these dots closely approximate
our function. If we decrease the grid_size further, the blue lines will become as accurate as
it’s possible to plot on a computer screen.

We could use the cosine function as a basis function in our model. We can also create and
plot other basis functions. For example RBFs:

def rbf_1d(xx, cc, hh):
return np.exp(-(xx-cc)**2 / hh**2)

plt.clf()
grid_size = 0.01
x_grid = np.arange(-10, 10, grid_size)
plt.plot(x_grid, rbf_1d(x_grid, cc=5, hh=1), '-b')
plt.plot(x_grid, rbf_1d(x_grid, cc=-2, hh=2), '-r')
plt.show()

The code above plots a radial basis function centred at x=5 in blue, and one in red that’s
twice as wide and centred at x=−2.

[The website version of this note has a question here.]

1.1 Combinations of basis functions

You might think of the function f (x) = ∑k wkφk(x) as being made up of separate parts φk.
For example, plot or sketch the function

f (x) = 2φ1(x)− φ2(x), (1)

where φ1 and φ2 are unit bandwidth RBFs centred at −5 and +5. You can identify two
separate bumps, each a scaled version of a basis function.
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An RBF lets us push up and down a function in a region close to its centre. In low-dimensions
(1d curve fitting, or fitting a surface over 2D inputs) we can evenly space a grid of RBFs and
represent a large class of smooth functions. These functions can be made high or low in any
region, by setting the weight associated with the RBF there. The widths of the RBFs should
be set so that they overlap, or our function will consist of isolated “spikes”.

In higher dimensions we can’t use a grid of RBFs (why? Answer in footnote1). One way to
set the centres of RBFs in higher dimensions is to place them on K training points picked at
random.

Although the above “push up and down”-intuition has some use, it’s frequently not obvious
by eye what the underlying basis functions are. For example, we can create a function with
monomial basis functions

φ1(x) = 1 (2)
φ2(x) = x (3)

φ3(x) = x2, (4)

and weights w = [5 10 −1]>. The resulting function has a simple form,

f (x) = w>φ(x) = 5 + 10x− x2 = 30− (x−5)2, (5)

which, unlike any of the basis functions, peaks at x = 5. Similarly, a function made by
combining several overlapping RBFs can have peaks in between the peaks of any of the
underlying basis functions.

The following question may be difficult on first reading, but we want to give you an early
sense for the sort of reasoning you will need to do in this course. Later in the course, you
will face questions requiring similar kinds of reasoning, but without any hint:

[The website version of this note has a question here.]

1.2 Linear regression fits

Consider a dataset with 3 datapoints:

y =

 1.1
2.3
2.9

 , X =

 0.8
1.9
3.1

 . (6)

Try fitting different linear regression models to this dataset. As it’s early in the course we
provide a demonstration, which you should at least run, and check that any small changes
that you can think of do what you expect:

import numpy as np
import matplotlib.pyplot as plt

# Set up and plot the dataset
yy = np.array([1.1, 2.3, 2.9]) # N,
X = np.array([[0.8], [1.9], [3.1]]) # N,1
plt.clf()
plt.plot(X, yy, 'x', markersize=20, mew=2)

# phi-functions to create various matrices of new features
# from an original matrix of 1D inputs.
def phi_linear(Xin):

return np.hstack([np.ones((Xin.shape[0],1)), Xin])

1. Because in D-dimensions, even a grid of width 2 requires $2D basis functions, which rapidly becomes impossible
as D increases.
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def phi_quadratic(Xin):
return np.hstack([np.ones((Xin.shape[0],1)), Xin, Xin**2])

def fw_rbf(xx, cc):
"""fixed-width RBF in 1d"""
return np.exp(-(xx-cc)**2 / 2.0)

def phi_rbf(Xin):
return np.hstack([fw_rbf(Xin, 1), fw_rbf(Xin, 2), fw_rbf(Xin, 3)])

def fit_and_plot(phi_fn, X, yy):
# phi_fn takes N, inputs and returns N,D basis function values
w_fit = np.linalg.lstsq(phi_fn(X), yy, rcond=None)[0] # D,
X_grid = np.arange(0, 4, 0.01)[:,None] # N,1
f_grid = np.dot(phi_fn(X_grid), w_fit)
plt.plot(X_grid, f_grid, linewidth=2)

fit_and_plot(phi_linear, X, yy)
fit_and_plot(phi_quadratic, X, yy)
fit_and_plot(phi_rbf, X, yy)
plt.legend(('data', 'linear fit', 'quadratic fit', 'rbf fit'))
plt.xlabel('x')
plt.ylabel('f')

plt.show()

It is possible to fit any three points exactly using a model with three basis functions (which
means f=y). As long as the basis functions create an N×K or 3×3 feature matrix Φ that
is invertible2, we can set the weights to w = Φ−1y. We can write down lots of different
models with three basis functions that will agree on the outputs for the three training inputs.
However, the predictions will usually be different for new test inputs. Predicting the future
given past data is an inherently ill-posed problem.

2. It turns out that for most of the basis functions we use, including polynomials or RBFs with different centres,
when applied to different datapoints, the feature matrix Φ will be invertible when there are as many basis functions
as datapoints. Bishop’s (1995) Neural Networks for Pattern Recognition book defers to Micchelli (1984), Interpolation of
scattered data: Distance matrices and conditionally positive definite functions, for the technical details.
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