
Programming in Python
The course will require you to use the Python programming language, and will heavily use
array-based computation using the NumPy library.

Why Python: Python is widely-used, general-purpose programming language that provides
access to a large number of datascience and machine learning frameworks. Unlike some
special-purpose statistical languages, you’ll have to learn to routinely import some modules,
as outlined below. But then you’ll find that the language does everything you need, and is
widely supported.

What about other languages? Fashions can change quickly. Until 2016, Lua was used with
Torch as the main machine learning framework at Facebook AI and Google DeepMind,
and so might have seemed like a safe and good option. However, there is now next to no
community around this framework. A lot of machine learning code used to be written in
Matlab, or its free-software equivalent Octave. These languages are quicker to get started
with than Python and NumPy, but are less good for writing larger programs, and don’t have
the same support by the top machine learning frameworks. The R language also has its place
for statistical work. Newcomers usually find it quirky, however it has a large collection of
well-documented statistical packages in CRAN, and is a good choice if you primarily want
to use existing statistical toolboxes. If you want to write compiled code, you might look at
using the C++ library Eigen (as used internally by TensorFlow).

The important thing is to learn the principles of array-based computation for machine
learning. If you start with Python and NumPy, you should be able to rapidly generalize to
whatever tool you need to use in the future.

1 Getting started with Python
Python and its associated scientific libraries are installed on the Informatics DICE system.

If installing on your own machine, we recommend trying the Anaconda distribution, unless
the package manager you normally use to install software has well-maintained Python
packages. Some software distributions come with fairly old Python packages, whereas
Anaconda usually “just works”. Whatever route you take, you’ll want at least Python,
NumPy, SciPy, and Matplotlib. You should install Python 3 rather than Python 2 (more
below).

If you don’t already know the basics of Python, you should first find a Python tutorial
at your level, and work through it. The official Python tutorial is a good start. (You don’t
need the more advanced topics, like classes, or to work through all of the standard library
examples.) Then you would need to learn the NumPy and Matplotlib libraries. Again, there
are many tutorials online. You might start with the official quickstart guide. For more, you
could work through some of scipy-lectures.org, which aims to be “One document to learn
numerics, science, and data with Python”.

You can use Python interactively from the ipython command-line program. From there
you can type %paste to run code in the clipboard, or use the %run command to run code
stored in a file. If you get an error, you can use %debug to enter a debugger. If you start
ipython with ipython3 --matplotlib then plotting works smoothly: there’s no need for
plt.show() commands, and plot windows don’t cause the interpreter to hang. Alternatively
type %matplotlib after starting ipython.

Those that like a graphical environment could try Spyder. There are also popular heavy-
weight commercial environments such as PyCharm.

IPython or Jupyter notebooks are becoming popular, and are used in some other courses.
If you like the notebook interface, feel free to use it yourself. They’re great for producing a
demonstration of how to use a library, or for working notes where you can save results inline.

MLPR:w0e Iain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/ 1

https://github.com/torch/torch7
https://github.com/torch/torch7
https://www.anaconda.com/distribution/
https://docs.python.org/3/tutorial/
https://docs.scipy.org/doc/numpy/user/quickstart.html
https://scipy-lectures.org/
https://docs.spyder-ide.org/
https://www.jetbrains.com/pycharm/
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/

However, they aren’t a good way of holding the main code for a project, or for collaboration.
Notebooks save results and code in one file, which doesn’t work well with version control,
and if you send someone a notebook, you’re forcing them to launch a server and open a
web-browser, rather than using the development environment of their choice. Make sure
you are also able to work with code stored in .py files.

1.1 Commonly-used Python modules

If you use Python, you will use NumPy extensively. The standard way to use this module is
import numpy as np

Then some example code would be:
A = np.random.randn(3, 3)
matrix_product = np.dot(A, A) # simply "A @ A" with python >=3.5

Python examples might not always specify the import line, but you’ll need it if the code
refers to np.something. Similarly if an example uses plt, a Matlab-like plotting interface,
you’ll need to import it as follows:

import matplotlib.pyplot as plt

Some people reduce the amount of typing they need to do with:
from numpy import *
from numpy.random import *
from matplotlib.pyplot import *

which means code can directly call functions like dot() and plot() without a “np.” or “plt.”
prefix. Sometimes short Matlab snippets work unaltered in Python this way (although care
is required). Ready access to the functions is convenient for interactive use, but importing
a large set of functions is usually considered poor practice in “real code”. For example
Python’s sum() and max() and NumPy’s np.sum() and np.max() could become confused
with each other, which can lead to subtle bugs.

1.2 Python/NumPy Arrays, matrices, vectors, lists, tuples, . . .

One reason that numerical computation with Python is more complicated for beginners than
dedicated numerical languages like Matlab is the larger number of types you have to deal
with immediately.

Python’s usual tuple and list types don’t provide convenient array-based arithmetic
operations. For example

xx = [1, 2, 3] # python list
print(xx*3) # prints [1, 2, 3, 1, 2, 3, 1, 2, 3]
print((1,2) + (3,4)) # prints (1, 2, 3, 4)

You will use the list or tuple types to initialize NumPy arrays, and also as containers of
NumPy arrays of different shapes.

NumPy has a “matrix” type (created with np.matrix), which we strongly recommend you
avoid completely (as does the wider NumPy community). Standard practice is to use NumPy
arrays for all vectors, matrices, and larger arrays of numbers. Attempting to mix NumPy
matrix and array types in your code is likely to lead to confusion and bugs.

One way to ensure you’re dealing with NumPy arrays is to convert to them at the top of
functions you write:

def my_function(A):
A = np.array(A) # does nothing if A was already a numpy array
N, D = A.shape # now works, even if A was originally a list of lists

Unlike Matlab, NumPy distinguishes between scalars, vectors, and matrices. If you’re going
to use NumPy, you should know (or work out) what the following code outputs, and why:

MLPR:w0e Iain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/ 2

https://numpy.org/
https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html#array-or-matrix-which-should-i-use
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/

A = np.random.randn(3, 2)
print(A.shape)
print(np.sum(A,1).shape)
print(np.sum(A).shape)

If some NumPy code expects an array of shape (N,), a vector of length N, it might not work
if you give it an array of shape (N,1) or (1,N) (and vice-versa). You can convert between
vectors and 2D arrays using np.reshape, np.ravel(), and indexing tricks.

1.3 Broadcasting

A common NumPy task is to subtract a vector rv from every row of a matrix A stored in an
array:

For shape (N,M) array A, and shape (M,) array rv
A - rv # or more explicitly: A - rv[None,:]

To subtract a vector cv from every column:
for shape (N,) array cv
A - cv[:,None]

Here “None” creates a new axis: cv[:,None] is a 2-dimensional array with shape N,1. The
single column is automatically “broadcast” by NumPy across the M columns of A. If you
didn’t expand cv into a 2-dimensional array, the subtraction would fail.

You can use newaxis from the numpy module instead of None, which is more explicit.
However, I don’t always want to have to import newaxis, and np.newaxis is too long to
repeat many times in code that does a lot of indexing. NumPy isn’t going to break the use
of None, because lots of code uses it and it’s documented.

1.4 “Assignment” and pass-by-reference

This section is about a common misunderstanding that can lead to incorrect Python code.

In Python “=” is used for “assignment”, but when there’s just a variable name on the left,
a more precise description is that it’s for “attaching the name on the left-hand side to the
object on the right-hand side”. A simple example is:

A = np.ones((2, 2))
B = A
B[0, 0] = 25
print(A)

The second line “B = A” attaches the name B to the same object that the name A is already
attached to — a 2×2 array of ones.

“B[0, 0] = 25” modifies the first element of the underlying object, so both A and B are
changed.

If you don’t want to accidentally change arrays, write “B = A.copy()” not “B = A”.
Also for slices: “first_row = A[0].copy()”

For objects other than NumPy arrays, you might need:
import copy
B = copy.deepcopy(A)

Similarly, arguments to functions are references to objects that might have other names. You
shouldn’t alter the original objects, unless the caller definitely knows that the arguments
could be modified. Here’s one pattern to make a function safer to use:

def my_function(A, in_place=False):
if not in_place:

A = A.copy()
A += 1 # ... modify A
return A

MLPR:w0e Iain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/ 3

https://docs.scipy.org/doc/numpy/reference/constants.html#numpy.newaxis
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/

A = np.ones((2, 2))
B = my_function(A) # A and B are different
B = my_function(A, in_place=True) # A and B are the same (saves memory)

Or you could just always take the copy, losing the ability to save some memory and time,
but making the code simpler.

If you don’t take copies, you’ll have to be pretty careful to track when names share objects.
For example, it takes a moment to be sure what the following does:

A = np.ones((2, 2))
B = A
B = B + 6
print(A)
B += 6
print(A)

The right-hand side of “B = B + 6” creates a new object1. So this line doesn’t affect the object
referred to by A. Moreover, this line attaches B to a different object than A. Therefore, the line
“B += 6” doesn’t affect A either — although it would have done without the “B = B + 6” line!

So “B = A.copy()” isn’t necessary in this example. But it would have been a good idea for
clarity, and could avoid bugs later when the code is altered.

If none of that is confusing: congratulations! You’re probably an experienced programmer.

If it is confusing, you’re not alone. Invest time to work through examples like those above at
a Python prompt. Also try out each part of code you write on small example arrays to check
it does what you think it does. (Which experts should do too!)

1.5 Python 2 vs Python 3

The migration from Python 2 to 3 has been slow and painful. As recently as 2016 Ope-
nAI stated many researchers were still using Python 2.7. However, Python 2 is no longer
supported, so you should definitely use Python 3 for new code.

The main change in Python 3 is Unicode string handling, which isn’t relevant for the sort
of code we’ll write in this course. The minor issue you’ll have to deal with in practice is
avoiding Python 2 print statements:

print "Hello World!" # Python 2 code that will crash in Python 3

Add parenthesis around the string as follows:
print("Hello World!") # Works in both Python 2 and Python 3

Replace any more complicated Python 2 print statements with Python 3 style print functions.
You might see from __future__ import lines at the top of code, which are to keep these
examples working in Python 2 as well. For example:

from __future__ import print_function # not needed any more

print('thing1', 'thing2', sep=', ')

Python 3.5 came with a matrix multiply operator @ which performs np.matmul. You can
often write A @ B instead of np.dot(A, B). However, be careful: np.matmul has different
broadcasting rules and doesn’t work with scalars. There is also no easy way to get the @
operator in earlier versions of Python, so examples in the notes tend to use np.dot to ensure
broad compatibility. But if you’re using Python ≥ 3.5, you could go ahead and try out the @
operator in your own code.

1. In theory, if B referred to an object from a different library than NumPy, “+” could modify A in place and return
the original object. In that case, A would be modified, and would still refer to the same object as B. Ouch! Fortunately,
the classes in most libraries are written so that “+” doesn’t have surprising side-effects.

MLPR:w0e Iain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/ 4

https://openai.com/blog/infrastructure-for-deep-learning/
https://openai.com/blog/infrastructure-for-deep-learning/
https://www.python.org/doc/sunset-python-2/
https://www.python.org/doc/sunset-python-2/
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.dot.html#numpy.dot
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2020/

	 Getting started with Python
	 Commonly-used Python modules
	 Python/NumPy Arrays, matrices, vectors, lists, tuples, …
	 Broadcasting
	 ``Assignment'' and pass-by-reference
	 Python 2 vs Python 3

