
MLPR Tutorial Sheet 4
1. Conjugate priors: (This question sets up some intuitions about the larger picture for

Bayesian methods.)

A conjugate prior for a likelihood function is a prior where the posterior is a distribution
in the same family as the prior. For example, a Gaussian prior on the mean of a
Gaussian distribution is conjugate to Gaussian observations of that mean.

a) The inverse-gamma distribution is a distribution over positive numbers. It’s often
used to put a prior on the variance of a Gaussian distribution, because it’s a
conjugate prior.

The inverse-gamma distribution has pdf (as cribbed from Wikipedia):

p(z | α, β) =
βα

Γ(α)
z−α−1 exp

(
− β

z

)
, with α > 0, β > 0, (1)

where Γ(·) is a gamma function.1

Assume we obtain N observations from a zero-mean Gaussian with unknown
variance,

x(n) ∼ N (0, σ2), n = 1 . . . N, (2)

and that we place an inverse-gamma prior with parameters α and β on the
variance. Show that the posterior over the variance is inverse-gamma, and find its
parameters.

Hint: you can assume that the posterior distribution is a distribution; it nor-
malizes to one. You don’t need to keep track of normalization constants, or do
any integration. Simply show that the posterior matches the functional form of
the inverse-gamma, and then you know the normalization (if you need it) by
comparison to the pdf given.

b) If a conjugate prior exists, then the data can be replaced with sufficient statistics.
Can you explain why?

2. Gaussian processes with non-zero mean:

In the lectures we assumed that the prior over any vector of function values was
zero mean: f ∼ N (0, K). We focussed on the covariance or kernel function k(x(i), x(j)),
which evaluates the Kij elements of the covariance matrix (also called the ‘Gram
matrix’).

If we know in advance that the distribution of outputs should be centered around
some other mean m, we could put that into the model. Instead, we usually subtract the
known mean m from the y data, and just use the zero mean model.

Sometimes we don’t really know the mean m, but look at the data to estimate it. A
fully Bayesian treatment puts a prior on m and, because it’s an unknown, considers all
possible values when making predictions. A flexible prior on the mean vector could be
another Gaussian process(!). Our model for our noisy observations is now:

m ∼ N (0, Km), Km from kernel function km,
f ∼ N (m, K f ), K f from kernel function k f ,

y ∼ N (f, σ2
nI), noisy observations.

Show that — despite our efforts — the function values f still come from a function
drawn from a zero-mean Gaussian process (if we marginalize out m). Identify the
covariance function of the zero-mean process for f .

1. Numerical libraries often come with a gammaln or lgamma function to evaluate the log of the gamma function.
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Identify the mean’s kernel function km for two restricted types of mean: 1) An unknown
constant mi = b, with b ∼ N (0, σ2

b ). 2) An unknown linear trend: mi = m(x(i)) =
w>x(i)+b, with Gaussian priors w ∼ N (0, σ2

wI), and b ∼ N (0, σ2
b ).

Sketch three typical draws from a GP prior with kernel:

k(x(i), x(j)) = 0.12 exp
(
− (x(i) − x(j))2/2

)
+ 1.

Hints in footnote2.

3. Some computation with probabilities: It’s common to compute with log-probabilities
to avoid numerical underflow. Quick example: notice that the probability of 2000 coin
tosses, 2−2000, underflows to zero in Matlab, NumPy, or any package using IEEE 64 bit
floating point numbers.

If we have two possible models, M1 and M2, for some features, we can define:

a1 = log P(x |M1) + log P(M1) (3)
a2 = log P(x |M2) + log P(M2). (4)

Up to a constant, these ‘activations’ give the log-posterior probabilities that the model
generated the features. Show that we can get the posterior probability of model M1
neatly with the logistic function:

P(M1 | x) = σ(a1 − a2) =
1

1 + exp(−(a1 − a2))
. (5)

Now given K models, with ak = log[P(x |Mk) P(Mk)], show:

log P(Mk | x) = ak − log ∑
k′

exp ak′ . (6)

The log ∑ exp function occurs frequently in the maths for probabilistic models (not
just model comparison). Show that:

log ∑
k

exp ak = max
k

ak + log ∑
k

exp
(

ak −max
k′

ak′
)

. (7)

Explain why the expression is often implemented this way. (Hint: consider what
happens when all the ak’s are less than −1000).

4. Bonus question (if you don’t do it now, it would be useful to review it later): Pre-
processing for Bayesian linear regression and Gaussian processes:

We have a dataset of inputs and outputs {x(n), y(n)}N
n=1, describing N preparations of

cells from some lab experiments. The output of interest, y(n), is the fraction of cells that
are alive in preparation n. The first input feature of each preparation indicates whether
the cells were created in lab A, B, or C. That is, x(n)1 ∈{A, B, C}. The other features are real
numbers describing experimental conditions such as temperature and concentrations
of chemicals and nutrients.

a) Describe how you might represent the first input feature and the output when
learning a regression model to predict the fraction of alive cells in future prepara-
tions from these labs. Explain your reasoning.

b) Compare using the lab identity as an input to your regression (as you’ve discussed
above), with two baseline approaches: i) Ignore the lab feature, treat the data from

2. The covariances of two Gaussians add, so think about the two Gaussian processes that are being added to give
this kernel. You can get the answer to this question by making a tiny tweak to the Gaussian process demo code
provided with the class notes.
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all labs as if they came from one lab; ii) Split the dataset into three parts one for
lab A, one for B, and one for C. Then train three separate regression models.

Discuss both simple linear regression and Gaussian process regression. Is it
possible for these models, when given the lab identity as in a), to learn to emulate
either or both of the two baselines?

c) There’s a debate in the lab about how to represent the other input features: log-
temperature or temperature, and temperature in Fahrenheit, Celsius or Kelvin?
Also whether to use log concentration or concentration as inputs to the regression.
Discuss ways in which these issues could be resolved.

Harder: there is a debate between two different representations of the output.
Describe how this debate could be resolved.
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