
Neural networks introduction
Linear models and generalized linear models (logistic regression et al.) are easy to fit. Least
squares linear regression has a direct solution (unless the number of parameters is huge1).
The other variants can be fitted with gradient descent, and logistic/softmax regression has a
convex cost function2, so we can still find the best possible fit to the training set (a global
optimum).

I like linear models. If looking at a new problem, perhaps when consulting, I’d see if I could
at least start by setting up a linear model. The code would be simple, and the results would
be fairly reproducible because I could get the same fit every time if I used a good optimizer.
Even if I needed something more complicated in the end, I’d at least have a baseline that
could confirm whether a more advanced system’s performance was reasonable.

Making a linear model work well might require some insight into how to transform the
inputs and outputs (“feature engineering”). You can think of neural networks3 as linear
models with additional parts, where at least some of the feature transformations can also
be learned. Parameters are fitted for a series of stages of computation, rather than just the
weights for a single linear combination. The benefit of neural networks over linear models is
that we can learn more interesting functions. But fitting the parameters of a neural network
is harder: we might need more data, and the cost function is no longer convex.

1 We’ve already seen a neural net, we just didn’t fit it
We’ve already fitted non-linear functions. We simply transformed our original inputs x into
a vector of basis function values φ before applying a linear model. For example we could
make each basis function a logistic sigmoid:

φk(x) = σ((v(k))>x + b(k)), (1)

and then take a linear combination of those to form our final function:

f (x) = w>φ(x) + b, or f (x) = σ(w>φ(x) + b). (2)

Here I’ve chosen to put in bias parameters in the final step, rather than adding a con-
stant basis function. This function is a special case of a “neural network”. In particular a
“feedforward (artificial) neural network”, or “multilayer perceptron” (MLP).

The function has many parameters θ = {{v(k), b(k)}K
k=1, w, b}. What would make it a neural

network is if we fit all of these parameters θ to data. Rather than placing basis functions by
hand, we pick the family of basis functions, and “learn” the locations and any other parame-
ters from data. A neural network “learning algorithm”, is simply an optimization procedure
that fits the parameters to data, usually (but not always) a gradient-based optimizer that
iteratively updates the parameters to reduce their cost. In practice, optimizers can only find
a local optimum, and in practice optimization is usually terminated before convergence to
even a local optimum.

1. More detail: I hesitate to say linear regression has a “closed form solution”, because a numerical algorithm
of some sort is always needed to compute the actual weights. The normal equations approach for D parameters
requires O(D3) time and O(D2) space to construct and solve the linear system. Numerical linear-algebra approaches
using standard QR decompositions (as used by Matlab’s \) or dense SVD solvers (as used by NumPy’s lstsq) cost
at least as much. I can’t use these “direct” approaches on my laptop if D is 100,000. There are a variety of possible
iterative numerical methods for large least-squares problems — including fitting with gradient-based methods. I’d
do a quick literature search, or ask someone, if I wanted to know the current state-of-the-art.
2. If cost C(w) is convex, then a straight line between two points on the function never goes below the surface:
C(αw+ (1−α)w′) ≤ αC(w) + (1−α)C(w′), where 0 ≤ α ≤ 1. It’s a stronger statement than “unimodal”, and makes
optimization a lot easier. There are whole books on convex optimization: http://stanford.edu/~boyd/cvxbook/
3. Here I am talking about the simplest “feed-forward” neural networks.
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2 Why is it called a neural network?
[A quick sloppy interlude — non-examinable]

Why is it called a neural network? The term neural network is rooted in these models’
origins as part of connectionism — models of intelligent behaviour that are motivated by how
processes could be structured, but usually abstracted far from the biological details we know
about the brain. An accurate model of neurons in the brain would involve large sets of
stochastic differential equations; not smooth, simple, deterministic functions.

There is some basis to the neural analogy. There is electrical activity within a neuron. If a
voltage (“membrane potential”) crosses a threshold, a large spike in voltage called an action
potential occurs. This spike is seen as an input by other neurons. A neuron can be excited
or depressed to varying degrees by other neurons (it weights its inputs). Depending on the
pattern of inputs to a neuron, it too might fire or might stay silent.

In early neural network models, a unit computed a weighted combination of its input, w>x.
The unit was set to one if this weighted combination of input spikes reached a threshold
(the unit spikes), and zero otherwise (the unit remains silent). The logistic function φk(x)
is a ‘soft’ version of that original step function. We use a differentiable version of the step
function so we can fit the parameters with gradient-based methods.

3 Some neural network terminology, and standard processing layers
In the language of neural networks, a simple computation that takes a set of inputs and
creates an output is called a “unit”. The basis functions in our neural network above are
“logistic units”. The units before the final output of the function are called “hidden units”,
because they don’t correspond to anything we observe in our data. The feature values
{x1, x2, . . . xD} are sometimes called “visible units”.

In the neural network model above, the set of φk basis functions all use the same inputs x,
and all of the basis function values go on together to the next stage of processing. Thus these
units are said to form a “layer”. The inputs {x1, x2, . . . xD} also form a “visible layer”, which
is connected to the layer of basis functions.

The layers in simple feed-forward neural networks apply a linear transformation, and then
apply a non-linear function element-wise to the result. To compute a layer of hidden values
h(l) from the previous layer h(l−1):

h(l) = g(l)(W(l)h(l−1) + b(l)), (3)

where each layer has a matrix of weights W(l), a vector of biases b(l), and uses some
non-linear function g(l), such as a logistic sigmoid: g(l)(a) = σ(a); or a Rectified Linear
Unit (ReLU): g(l)(a)=max(0, a).4 The input to the non-linearity, a, is called an activation. If
we didn’t include non-linearities there wouldn’t be any point in using multiple layers of
processing (see tutorial 1).

We can define h(0) = x, so that the first hidden layer takes input from the features of our
data. Then we can add as many layers of processing we like before the final layer, which
gives the final output of our function.

4. A natural question from keen students at this point is: “what non-linearity should I use?”. As with many
questions in machine learning, the answer is “it depends” and “we don’t know yet”. ReLUs (named after Relu
Patrascu, a friendly sysadmin at the University of Toronto) replaced logistic sigmoids in generic hidden layers
of many neural networks as being easy to fit. However, now I would always use a PReLU instead, which have
worked better in cases I’ve tried. There are several other variants, including GELUs, SELUs. The small differences
between these non-linearities don’t tend to be where big advances come from. Fully differentiable non-linearities
like soft-plus log(1 + ea), which looks like a ReLU, will make some optimizers happier. Logistic sigmoids are still
useful as switches, used in mixtures of experts, LSTMs, and adapting models. Although some of this work is
theoretically motivated, what cross-validates the best is what ultimately wins in practice.
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Implementing the function defined by a standard neural network is very little code! A
sequence of linear transformations (matrix multiplies and maybe the addition of a bias
vector), and element-wise non-linearities.

4 Check your understanding
Have you followed the description of how the layers are composed to form a function?

Write a function in Matlab/Octave or Python+NumPy to evaluate a feedforward neural
network function on each of N scalar inputs, using two hidden layers with H1=100 and
H2=50 hidden units and a logistic sigmoid non-linearity, and a scalar output. Sample all the
weights randomly from a standard normal5. In the first instance, you could omit extra bias
parameters if you like. Plot the resulting function for inputs x ∈ [−2, 2].6 Try multiplying
the weights by 0.1 and 10, and see how the function changes. Try removing the non-linearity
in one or both hidden layers7, and see how your function changes.

Empirically, what properties make typical functions, specified by random weights, compli-
cated? You could take complicated in 1-dimension to mean “have at least several turning
points”. Are all of these properties strictly necessary for representing a complicated function?

5 Further reading
Bishop’s introduction to neural networks is Section 5.1. Bishop also wrote another book,
published in 1995: Neural Networks for Pattern Recognition. Despite being 25 years old, and so
missing out on more recent insights, it’s still a great introduction!

MacKay’s textbook Chapter 39 is on the “single neuron classifier”. The classifier described in
this chapter is precisely logistic regression, but described in neural network language. Maybe
this alternative view will help.

Murphy’s quick description of Neural Nets is in Section 16.5, which is followed by a literature
survey of other variants.

If you want to read more about biological neural networks and theoretical models of how
they learn, I recommend Theoretical Neuroscience by Dayan and Abbott.

Finally, not all neural network layers take the form: h(l) = g(l)(W(l)h(l−1) + b(l)). For exam-
ple, we could construct a function using the radial basis functions (RBFs) we discussed earlier,
and then train the centers and bandwidths of these functions. There are also specialized
transformations for modelling sequences and images. This course doesn’t do a deep dive
into the layers for particular applications, and the details of how best to combine them (a
changing landscape). The MLP course and Goodfellow et al.’s deep learning textbook are
good starting points on the details of recent practice.

6 For keen students: embedding and pooling
Most neural networks are not applied to arbitrary D-dimensional feature vectors. Instead
they take signals such as audio, images, or text, which have structure we know about, but
that might not have a fixed size. Audio or text sequences that we want to classify could have
different lengths. Images we want to tag could have different sizes.

5. Here we don’t want small weights, as in an initialization, we want to create an example non-linear function.
6. In Matlab/Octave your code might look like:
xx = (-2:0.01:2)'; ff = your_neural_net_function(xx, params); plot(xx, ff);
In Python like:
xx = np.linspace(-2, 2, 201); ff = your_neural_net_function(xx, params); plt.plot(xx, ff)
7. E.g. in Matlab, set “g1 = @(a) a;” instead of “g1 = @(a) 1./(1+exp(-a));”
Or in Python, “def g1(a): return a” instead of “def g1(a): return 1/(1+np.exp(-a))”
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This section has some non-examinable detail that shows how neural networks can begin
to deal with text and variable-sized inputs. However, this course isn’t trying to provide an
exhaustive survey of methods. It would also be worth learning about Convolutional neural
Networks (ConvNets), which are covered in the MLP course.

6.1 Embeddings

Consider a vector x that is a one-hot encoding of D possible items, such as a choice of one of
D English words. We could construct a K-dimensional hidden vector from this input using a
standard neural network layer:

e = g(Wx + b), (4)

which could be passed on to further layers of processing in a neural network. When we
input the ith choice/word, xd =δid, we only use the ith column of the matrix W:,i = w(i):

e(choice i) = g(w(i) + b). (5)

K of the parameters, W:,i = w(i), are used only when the input contains choice i, and
we’re setting K hidden vector values. Without reducing the space of functions that we can
represent, we could instead just define the hidden values for each choice to be equal to K
free parameters:

e(choice i) = v(i), e = embedding(i; V). (6)

This “embedding” operation replaces a discrete choice (e.g., of a word) with a K-dimensional
feature vector, representing or embedding our items in a K-dimensional vector space. When
we train a whole neural network on some task (such as text classification, or next word
prediction), the “embedding vectors” are learned.

Summary: We could learn vector representations of discrete objects by one-hot encoding
them, and providing them as inputs to a standard feed-forward neural network. The weights
W:,i = w(i) would “embed”/represent choice i, but the large matrix multiplication Wx would
be a wasteful way to implement the layer. Instead, most deep learning frameworks come
with embedding layers: a look-up table that takes an integer item identifier and returns a
vector of learnable parameters for that item.

6.2 Sequences and pooling

It’s common to have a variable number of inputs in a prediction problem, often in a sequence.
For example, we might have a sentence of text that we want to classify or translate. Or we
could have a sequence of events in a log for a particular user, and want to predict something
about that user (what they might want to know, or whether they are acting fraudulently).
However, standard neural networks require inputs of some fixed dimensionality (usually
called D in these notes).

If sentences/sequences were always exactly 25 words long, we could concatenate K-dimensional
word embeddings together, and obtain 25K-dimensional feature vectors. If sentences were
always at most 25 words, we could “pad” the sequence with a special token meaning
“missing word” and still use a neural network that takes D=25K inputs. However, to be able
to model data where the maximum sequence length is long, we will need to create huge
feature vectors. We may not have the computational resources, or enough data, to use these
huge vectors.

A simple and cheaper baseline, is to “pool” all of the inputs in a sequence together, for
example by just taking an average:

xpooled =
1
T

T

∑
t=1

embedding(x(t); V), (7)

where x(t) is the input at “time” t. No matter how long the sequence is, T, the pooled
representation is K-dimensional (where V is a matrix with K×D free parameters). We could
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replace the pooling operation with other functions, such as a sum or a max instead of an
average.

We could also use a weighted average:

xpooled =
T

∑
t=1

a(e(t)) e(t), e(t) = embedding(x(t); V), (8)

where a(e(t)) is a scalar weight, often chosen to be positive and sum to one. If we place all
the embeddings in a T×K matrix E, the simplest way to get such weights is probably:

a = softmax(Eq), (9)

where q is another K-dimensional vector of free parameters.

The “query” vector q tells us which embeddings to pay most “attention” to in the average,
so a are sometimes called “attention weights”. The weighted average is a simple version of
what’s called an “attention mechanism”. Attention mechanisms are often described as ways
of “looking” at parts of a sequence or an image, but in their simplest form, they’re just a
way of learning how to take a weighted average.

The above pooling operations ignore the times: they would return the same vector if we
shuffled the sequence. “Bag of words” models that throw away word order are common
for text classification, but would not work for machine translation. We could add the time
information to the embedding vectors, as in
https://papers.nips.cc/paper/7181-attention-is-all-you-need

Another way to deal with sequences is to build up a representation by absorbing one input
at a time. “Recurrent neural networks”, such as “LSTMs” do that.
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