
Regression and Gradients
So far we have managed to adapt our models to data using only least squares linear
regression and manipulating Gaussian distributions. However, as we built more interesting
models, you’ve probably had several questions that we haven’t been able to answer.

• If we want to set the centres of many basis functions, how can we fit them to data
instead of placing them by hand?

• How can we fit several Gaussian process hyperparameters without a massive grid
search?

• Earlier, when we approached binary classification using regression, the best function
should match P(y=1 | x). How can we avoid our fitted functions giving predictions
outside [0, 1]?

To answer these questions, we’ll need to fit non-linear optimization problems. These won’t
have closed-form solutions, and so we will have to approach them numerically. Many, but
not all, optimization problems are solved by gradient-based methods, which we begin to look
at in this note. We start by looking at how linear least squares regression can be solved with
gradient-based methods, so we can generalize it to other cases.

Where we’re going: In the next note we’ll fit a better regression model for classification. In
later notes we’ll cover models for other types of data, and models that learn representations
rather than using fixed basis functions. At first we will be fitting parameters, rather than
taking the Bayesian approach of computing a posterior distribution. Towards the end of the
course, we will return to the Bayesian approach, and apply it to non-Gaussian models.

1 Gradients for linear least squares regression
We can create a vector of residuals (differences between observed values and function values)
for a linear regression model as follows:

r = y− Xw. (1)

And previously we noticed that Matlab and NumPy know how to minimize the sum of the
square residuals:

r>r = (y− Xw)>(y− Xw) (2)

= y>y− 2w>X>y + w>X>Xw. (3)

We’ll now look at different ways that can be done.

Our first task is to find the gradient of this cost function with respect to the weights. That
is, the vector of partial derivatives: ∇wr>r. The gradient vector is a function of the weights.
At a given position in weight-space, it points in the direction in which a small movement
will increase the cost the most. You were asked to show this fact in the background self-test,
question 6ii), which has an answer available if you need to review this material.

We can differentiate small matrix/vector expressions by writing them as sums, and using
the elementary differentiation rules for scalars. For example:

∂x>y
∂xi

=
∂ ∑j xjyj

∂xi
= yi, ⇒ ∇x[x>y] = y. (4)

and

∂x>Ax
∂xi

=
∂ ∑jk xj Ajkxk

∂xi
= ∑

k
Aikxk + ∑

j
xj Aji, (5)

⇒ ∇x[x>Ax] = Ax + A>x, or 2Ax if A is symmetric. (6)

MLPR:w6a Iain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2019/ 1

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2019/

After some experience, you might remember some of these matrix/vector rules. Other such
rules can be found in references like The Matrix Cookbook. I will discuss a more systematic
approach to differentiate large functions in a later note.

For now, we can use the two rules we’ve derived to differentiate the cost function above:

∇w[r>r] = −2X>y + 2X>Xw. (7)

2 A closed form solution
The partial derivatives are all zero at an optimum weight vector. If there is unique best
setting of the weights, we can solve for where that happens:

−2X>y + 2X>Xw = 0 (8)

⇒ X>Xw = X>y (9)

⇒ w = (X>X)−1X>y. (10)

If (and only if) there isn’t a unique solution for the weights that give the minimum square
error, then (X>X) is not invertible and the equation isn’t defined. The above expression is
known as the normal equation solution of the least squares problem. You could implement
this solution as follows:

% Matlab/Octave
ww = (X'*X)\(X'*yy)

NumPy (or use the Cholesky solvers in scipy):
ww = np.linalg.solve(np.dot(X.T, X), np.dot(X.T, yy))

I have attempted to avoid numerical problems by solving the linear system directly rather
than inverting the matrix X>X. However this code is not the most accurate way to solve
least squares problems, which can be accessed by calling a dedicated routine (through \ or
lstsq, as previously demonstrated).1

3 Iterative methods
There are also generic algorithms that iteratively improve an initial guess of some model
parameters using a cost function and its gradient vectors. While linear regression has
specialist solvers, we could apply these generic algorithms anyway. If they don’t work in
simple cases, they’re not likely to be useful more generally!

A naive way to use the gradient ∇w[r>r] is the steepest-descent method:

w← w− η∇w[r>r], (11)

which uses a small step size η. The parameters are moved in the direction that makes the
biggest immediate change. The rule is applied repeatedly, with the gradient re-evaluated
before each update. There are several methods (found in Matlab’s optimization toolbox and
scipy) that will converge faster. Sometimes much faster.

1. See Solving Least Squares Problems, Lawson and Hanson (1974), Chapter 19, which argues that it’s better to use a
QR decomposition of the data matrix than losing precision by forming the summary X>X. Murphy’s textbook also
champions the QR approach. I must say I’m not totally convinced. For noisy and regularized machine learning
problems I’ve tried, the normal equations approach seems fine, and is ∼10× faster on my machine. However, I still
frequently use the QR solvers: they’re still quite fast, convenient, and I don’t have to keep checking whether the
normal equations approach will be accurate.

MLPR:w6a Iain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2019/ 2

http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3274
http://dx.doi.org/10.1137/1.9781611971217
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2019/

It may help to rewrite the gradient to understand what the steepest descent rule is doing.

∇w[r>r] = 2X>(Xw)− 2X>y (12)

= 2X>(f− y) (13)

= 2 ∑
n

x(n)(f (n) − y(n)). (14)

For each example we look at the ‘prediction error’, (f − y). The weights are pulled most in
the direction of inputs that had large prediction errors, to reduce misfit in those directions.

In Stochastic Gradient Descent (SGD) we take just one example at a time (perhaps at ran-
dom, or visit the examples in order). Each example gives a crude one-sample Monte Carlo
approximation of the gradient sum:

1
N
∇w[r>r] ≈ 2x(n)(f (n) − y(n)). (15)

We take a small step in minus this direction. Then pick another example and repeat. Each
time we see an example, we move the weights in a direction proportional to just one of the
input vectors.

If we have 100,000 datapoints, we perform 100,000 updates in one sweep through the dataset
(a ‘training epoch’). In the traditional (batch) steepest gradient descent method, we only
perform one update after looking at the whole dataset once. In the limit of an infinite stream
of data, SGD can fit a model as the data comes in. A traditional batch method never gets
started, as it can never compute the gradient.

Once we have a working gradient-based optimization procedure2, we can apply it to
problems beyond linear regression. We need to identify a suitable cost function, which no
longer needs to be least squares, and then obtain its gradients.

4 Check your understanding
• In the normal equation solution code, why did I write (X'*X)\(X'*yy) rather than

(X'*X)\X'*yy ? In Python: np.linalg.solve(np.dot(X.T, X), np.dot(X.T, yy))
rather than np.dot(np.linalg.solve(np.dot(X.T, X), X.T), yy)
Do they give the same answer? Is there something else to consider?

• What would happen to the normal equation solution in linear regression problems with
more features than datapoints (D > N, or as many statisticians would say, “p > n”)?

• In a previous note we saw that we can use a simple linear least squares solver to fit L2
regularized least squares problems. If we applied that trick, would it solve the problem
with the normal equations for D > N?

• One misguided way to add an “extra” feature would be to copy an existing one, i.e.,
create an extra column of the training inputs X equal to an existing column. Explain
why there would be multiple settings of the weights that have the same least squares
training cost. Explain why the normal equation approach becomes ill-defined. What
would happen if you ran a gradient-based optimizer to fit the weights?

• You could answer a generalized version of the previous question, where the “extra”
feature is an arbitrary linear combination of all the other features. The training inputs
X would contain a column that was a linear combination of the other columns.

• Instead of applying the trick we used before to fit L2 regularized models, can you
generalize the derivation of the normal equation to explicitly cover this case? (Many
textbooks have the answer to this problem.)

2. And we might find one slightly more sophisticated than described above.

MLPR:w6a Iain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2019/ 3

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2019/

5 Further Reading
Bishop covers the least squares solution in Section 3.1.1. The equations include a basis
function expansion (replacing X with Φ), and motivates the least squares cost from the
log-likelihood of a Gaussian model.

Murphy derives the least squares solution in Chapter 7 slightly more slowly. This description
also uses a Gaussian model to motivate the least squares cost function.

Barber Chapter 17 starts with linear regression.

Numerical Recipes (Press et al.) will tell you that steepest gradient descent is a bad algorithm,
and describes more sophisticated alternatives. See the section on Conjugate Gradient Meth-
ods in Multidimensions (section 10.6 of the second edition or 10.8 of the third edition). The
books have some nice descriptions, but I would stay clear of the code (better alternatives
with free licenses are available). However, they only describe ‘batch’ methods, that look at
an entire dataset before making each update. Stochastic (steepest) gradient descent is not
such a bad algorithm, especially for machine learning. https://arxiv.org/abs/1606.04838
is one recent survey.

MLPR:w6a Iain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2019/ 4

http://numerical.recipes/
https://arxiv.org/abs/1606.04838
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2019/

	 Gradients for linear least squares regression
	 A closed form solution
	 Iterative methods
	 Check your understanding
	 Further Reading

