Bayesian model choice

Fully Bayesian procedures can’t suffer from “overfitting” exactly, because parameters aren’t
fitted: Bayesian statistics only involves integrating or summing over uncertain parameters, not
optimizing. The predictions can depend heavily on the model, and choice of prior however.

Previously we chose models —and parameters that controlled the complexity of models —by
cross-validation. The Bayesian framework offers an alternative, using marginal likelihoods.

1 The problems we have instead of overfitting

In the Bayesian framework, we should use any knowledge we have. So if we knew (for some
reason) that some points were observations of a 9th order polynomial, we would ideally use
that model regardless of how much data we had. For example, given only 5 data points, we
can’t know where the underlying function is. However, predictions use a weighted average
over all possible fits: our predictive distribution would be broad/uncertain, and centred
around a sensible regularized interpolant (i.e. the fitted function).

That’s not to say we have no problems when using Bayesian methods.

If the model is too simple, we saw in a previous lecture that the posterior distribution
over weights becomes sharply peaked around the least bad fit. As a result, we can be very
confident about properties of a model, even if running some checks (such as looking at
residuals) would show that the model is obviously in strong disagreement with the data.

We can also have problems when we use a model that’s too complicated. As an extreme
example for illustration, we could imagine fitting a function on x € [0, 1] with a million
RBFs spaced evenly over that range with bandwidths ~ 10~°. We can closely represent any
reasonable function with this representation. However, given (say) 20 observations, most of
the basis functions will be many bandwidths away from all of the observations. Thus, the
posterior distribution over most of the coefficients will be similar to the prior (check: can you
see why?). Except at locations that are nearly on top of the observed data, our predictions
will be nearly the same as under the prior. We will learn slowly with this model.

2 Simple cases of probabilistic model choice

We have already used a simple form of probabilistic model comparison in Bayes classifiers.
Given two fixed models p(x|y=1) and p(x|y=0), we could evaluate a feature vector under
each and use Bayes’ rule to express our beliefs, P(y | x), about which model the features
came from.

With Gaussian class models, there are different ways that a model can win a comparison.
If a model has a tight distribution, then it will usually be the most probable model when
observations are close to its mean, even if those observations could also have come from a
broad distribution centred nearby. On the other hand, broad distributions become the most
probable model for extreme feature vectors or outliers. Finally, while the prior probabilities
of the class models have some effect, the likelihoods of the models often dominate.

A nice example of comparing broad and narrow models is dice with different numbers of
sides. If we told you that we chose a dice at random from a million-sided dice and a 10-sided
dice and got a 5, you’d be pretty sure we’d rolled the 10-sided dice. That’s partly because of
priors: you don’t think we could possibly own a million sided dice. But even if you thought
that million-sided dice were just as common, you’d have the same view. For example, we
could implement this game on a computer and show you the Matlab/Octave code:

sides = [10, 1e6];

dice = (0.5<rand()) + 1;

outcome = floor(rand()*sides(dice)) + 1

MLPR:W4b Tain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2019/ 1

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2019/

Or the Python code:

from random import random

from math import floor

sides = [10, 1e6]

dice = (0.5 < random())

outcome = floor(random() * sides[dice]) + 1
outcome

Every time you see this code output a number between 1 and 10, you'll assume that it came
from dice=1. While it’s rare to get a small outcome like 5 with a million sided dice, it’s no
rarer than any other outcome, such as 63,823. However, the small outcomes are more easily
generated under the alternative narrow model, so it wins the comparison.

3 Application to regression models

Why do we usually favour a simple fit over the model with a million narrow basis functions
described above? It could be because of priors: we might favour simple models. But actually
the world is complicated, and our prior beliefs are that many functions have many degrees
of freedom. What would happen if we gave half of our prior mass to the model with a
million narrow basis functions? It would still usually lose a model comparison.

A regression model has to distribute its prior mass over all of the possible regression surfaces
that it can represent, or over all of its parameters. If a model can represent many different
regression surfaces, only some of these will match the data. The probability that a model M
assigns to some observations in a training set is:

Py X, M) = [ply,w|X, M) dw = [ply| X, w, M) p(w| M) dw, M)

where the parameters w are assumed unknown. Narrowly focussed models, where the
mass of the prior distribution p(w | M) is concentrated on simple curves, will assign higher
density to the outputs y observed in many natural datasets than the million narrow basis
function model. The narrow basis function model can model smooth functions, but can
also fit highly oscillating data—it’s a broader model that can explain outliers, but that will
usually lose to simpler models for well-behaved data.

The probability of the data under the model, given above, is the model’s marginal likelihood,
and can be used to score different models, instead of a cross-validation score. For Gaussian
models, and some other models (usually with conjugate priors, discussed in Tutorial 4), we
can compute the integral. Later in the course we also discuss how to approximate marginal
likelihoods, where we can’t solve the integral in closed form.

4 Application to hyperparameters

The main challenge with model-selection is often setting real-valued parameters like the
noise level, the typical spread of the weights (their prior standard deviation), and the widths
of some radial basis functions. These values are harder to cross-validate than simple discrete
choices, and if we have too many of these parameters, we can’t cross-validate them all.

Incidentally, in the million narrow RBFs example, the main problem wasn’t that there
were a million RBFs, it was that they were narrow. Linear regression will make reasonable
predictions with many RBFs and only a few datapoints if the bandwidth parameter is broad
and we regularize. So we usually don’t worry about picking a precise number of basis
functions.!

1. When we cover Gaussian processes, we will have an infinite number of basis functions and still be able to make
sensible predictions!

MLPR:W4b Tain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2019/ 2

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2019/

The full Bayesian approach to prediction was described in the previous note. We integrate
over all parameters we don’t know. In a fully Bayesian approach, that integral would
include noise levels, the standard deviation of the weights in the prior, and the widths
of basis functions. Because the best setting of each of these values is unknown. However,
computing integrals over all of these quantities can be difficult (we will return to methods
for approximating such difficult integrals later in the course).

A simpler approach is to maximize some parameters, according to their marginal likelihood,
the likelihood with most of the parameters integrated out. For example, in a linear regression
model with prior

p(w|ow) = N (w;0,051),)

and likelihood
pylxw,op) = /\/’(y;wa,Uﬁ), 3)

we can fit the hyperparameters oy, and 0, parameters which specify the model, to maximize
their marginal likelihood:

P X,00,0) = [ply,w|X,0u o) dw = [p(y|X,w,0) plw|ow) dw. @)

No held-out validation set is required.

Fitting a small number of parameters (¢, and 0y) to the marginal likelihood is less prone
to overfitting than fitting everything (0w, 0y, and w) to the likelihood p(y | X, w, 0w, 0y)).
However, overfitting is still possible.

5 Check your understanding

We run the computer program to random roll either a 10- or 10°-sided “dice”, as described
early on in the note. The program outputs a 5, what is the posterior probability of sides=10
rather than sides=1e6?

Can you work out how to optimize the marginal likelihood p(y | X, 0, 0y) for a linear
regression model? Look back at the initial note on Bayesian regression for results that could
be useful. In that note we were assuming that the hyperparameters o, and ¢, were known
and fixed. In the notation of that note, the marginal likelihood was simply p(y | X), because
we didn’t bother to condition every expression on the hyperparameters. More guidance in
the footnote?.

6 Further Reading

Bishop Section 3.4 and Murphy Section 7.6.4 are on Bayesian model selection. For keen
students, earlier sections of Murphy give mathematical detail for a Bayesian treatment of the
noise variance.

For keen students: Chapter 28 of MacKay’s book has a lengthier discussion of Bayesian
model comparison. Some time ago, lain wrote a note discussing one of the figures in that
chapter.

For very keen students: It can be difficult to put sensible priors on models with many
parameters. In these situations it can sometimes be better to start out with a model class
that we know is too simple, and only swap to a complex model when we have a lot of data.
Bayesian model comparison can fail to tell us the best time to switch to a more complex

2. Bayes’ rule tells us that: p(w | D) = p(w) p(y|w, X)/p(y| X). The Bayesian regression note identified all of
the distributions in this equation except for p(y | X), so we can simply rearrange it to write p(y | X) as a fraction
containing three Gaussian distributions. The identity is true for any w, so we can use any w (e.g., w=0, or w=wy)
and we will get the same answer. We could optimize the hyperparameters by grid search.

MLPR:W4b Tain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2019/ 3

http://homepages.inf.ed.ac.uk/imurray2/pub/05occam/
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2019/

model. The paper Catching up faster by switching sooner (Erven et al., 2012) has a nice
language modelling example, and lain’s thoughts are in the discussion of the paper.

For very keen students, Gelman et al.’s Bayesian Data Analysis book is a good starting point
for reading about model checking and criticism. All models are wrong, but we want to
improve parts of a model that are most strongly in disagreement with the data.

MLPR:W4b Tain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2019/ 4

http://dx.doi.org/10.1111/j.1467-9868.2011.01025.x
http://homepages.inf.ed.ac.uk/imurray2/pub/11catchup/catchup.pdf
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2019/

	 The problems we have instead of overfitting
	 Simple cases of probabilistic model choice
	 Application to regression models
	 Application to hyperparameters
	 Check your understanding
	 Further Reading

