
Bayesian regression

We now revisit regression, fitting real-valued outputs, with a more elaborate statistical
approach than before. Previously, we fitted a scalar function, which represented a best
guess of an output at a location. Now we will represent a whole probability distribution
over possible outputs for each input location. Given this probabilistic model, we can use
“Bayesian” reasoning (probabilities to express beliefs about unknown quantities) to make
predictions. We won’t need to cross-validate as many choices, and we will be able to specify
how uncertain we are about the model’s parameters and its predictions. We won’t achieve
these advantages in this note, but that’s the motivation for what we’re setting up here.

1 A probabilistic model for regression
When we created classifiers, it was useful to model the probability distribution over possible
labels at each position in input space P(y | x). We can also write down a probabilistic model
for regression models. The simplest starting point is a Gaussian model:

p(y | x, w) = N (y; f (x; w), σ2
y ), (1)

where f (x; w) is any function specified by parameters w. For example, the function f could
be specified by a linear model, a linear model with basis functions, or a neural network
(covered later in the course). We have explicitly written down that we believe the differences
between observed outputs and underlying function values should be Gaussian distributed
with variance σ2

y .1

The starting point for estimating most probabilistic models is “maximum likelihood”, finding
the parameters that make the data most probable under the model. Numerically, we minimize
the negative log likelihood:2

− log p(y |X, w) = −∑
n

log p(y(n) | x(n), w) (2)

=
1

2σ2
y

N

∑
n=1

[
(y(n) − f (x(n); w))2

]
+

N
2

log(2πσ2
y ). (3)

If we assume the noise variance σ2
y is constant, we fit the parameters w simply by minimizing

square error, exactly as we have done earlier in the course.

By following this probabilistic interpretation, we are making more explicit assumptions
than necessary to justify least squares3. However, adopting a probabilistic framework can
make it easier to explore and reason about different models. For example, if our measuring
instrument reported different noise variances (σy

(n))2 for different observed y(n) values, we
could immediately modify the likelihood and obtain a sensible new cost function. Later
in the course we will use non-Gaussian likelihoods to model other data types, and deal
with problems with our data such as outliers. Each time, the log-likelihood of a model
immediately gives us a new cost function.

For now we will stay with a simple linear regression model, with known constant noise
variance, and look at how to reason about its unknown weight parameters.

1. Notation: In the following notes we will have variances of multiple quantities, so we need to start labelling
them. We use σ2

y for the conditional variance of an observation y given the underlying function value f . It is not
the variance of the marginal distribution p(y). We will use this notation again when covering Gaussian processes
(GPs). The Murphy textbook also uses σ2

y when covering GPs, but plain σ2 for the noise variance for Bayesian linear
regression.
2. In this note, y is an N×1 vector containing a scalar observation for each training example.
3. e.g., https://en.wikipedia.org/wiki/Gauss%E2%80%93Markov_theorem
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2 Representing uncertainty with distributions
[If this section doesn’t make sense, just keep reading. It’s just meant as motivation, and the next
section is more concrete. Most people need to see a few restatements of Bayesian learning before it
makes sense.]

Imagine you were instructed to plot experimental results, with error bars, using paper, pencil
and ruler. You might find a line of best fit by eye. You could also draw the steepest and
shallowest straight lines that are still reasonably good fits to the data, to get a sense for how
uncertain the original fit is. Given ±σy error bars on the observed y values, you’d want each
fitted line to go through about 2/3 of the error bars. But there are many ways to draw such
a line: with limited noisy observations, you can’t know where an underlying function is.

What we’ve done in the figure below is slightly different. Rather than just showing extreme
lines, we’ve drawn a selection of twelve lines, each of which could plausibly have generated
the data. If we included the line that we actually used to generate the data in this collection,
you would have trouble identifying which one it was with certainty.
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One of the lines does look somewhat less plausible than the others. But it could be close to
the true line: maybe the left-most observation happened to have a large amount of noise
added to it, and the line is less steep than you think.

If we observe a lot more points, we can be more certain where the underlying line is. The
range of plausible lines we might draw should become more limited, perhaps like this:
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We’ve drawn the lines almost on top of each other, so they appear as one thick line. We can
be fairly certain that the true function is somewhere within that tight collection of lines.

If we wanted an intelligent agent to draw these plausible lines of fit for us, how should it do
it? Or more generally, how can we systematically express the uncertainty that we should
have in conclusions based on limited and noisy data?

One formal approach to handling uncertainty is to use probability distributions to represent
our beliefs, and probability theory to update them.4

4. For keen students: a justification of this view is outlined in “Probability, frequency and reasonable expectation”,
R. T. Cox, American Journal of Physics, 14(1):1–13, 1946. It’s a readable paper.
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In the context of line fitting, beliefs are represented by a probability distribution over the
parameters. When we are fairly certain, the distribution over parameters should have low
variance, concentrating its probability mass on a small region of parameter space. Given
only a few datapoints, our distribution over plausible parameters should be much broader.

In the figures above, we drew samples from probability distributions over parameters,
and plotted the resulting functions. The lines show just twelve of the many reasonable
explanations of the data as represented by a distribution over the model parameters. We got
the distributions from Bayes’ rule as described in the next section.

3 Bayes’ rule for beliefs about parameters
To apply probability theory to obtain beliefs we need both a probabilistic model, and prior
beliefs about that model.

Our example model for a straight line fit is:

f (x; w) = w1x + w2, p(y | x, w) = N (y; f (x; w), σ2
y ). (4)

If we knew the parameters w, we could compute the function for any x and simulate what
typical observations at that location would look like. However, when learning from data, we
don’t know the parameters w.

3.1 The prior

Our prior beliefs are represented by a distribution over the parameters, specifying which
models we think are plausible before observing any data. For example, if we set:

p(w) = N (w; 0, 0.42I), (5)

we think the following functions are all reasonable models we could consider:

−2 0 2 4

−6

−4

−2

0

2

4

Prior p(w)

x

y

Each of the lines above is a function f (x; w) where we have sampled the parameters w
from the prior distribution. They are quite bunched up around the origin. If we wanted to
consider larger intercepts at x=0, we could pick a broader prior on the bias parameter w2.

3.2 The posterior

The posterior distribution gives the beliefs about the model parameters that we should have
after observing data D = {x(n), y(n)}. These beliefs are represented by the distribution
p(w | D), pronounced “p of w given D”, and are obtained by Bayes’ rule. For generic data D
we’d write:

p(w | D) = p(D |w) p(w)

p(D) ∝ p(D |w) p(w). (6)
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However, for regression we often treat our data as y={y(n)}, and condition on the inputs X=

{x(n)} as fixed known quantities that don’t affect our prior beliefs. With these assumptions
we would instead write:

p(w | D) = p(w | y, X) =
p(y |w, X) p(w)

p(y |X)
∝ p(y |w, X) p(w). (7)

Our posterior belief in the parameters w is proportional to the product of two functions of
the parameters, the prior of the parameters p(w), and the likelihood of the parameters p(D |w)
or p(y |w, X). In statistics, likelihood is a technical term for when we consider the probability
of the data as a function of parameters (or later model choices).5 The likelihood function is
not a probability distribution over the parameters (

∫
p(D |w)dw 6= 1).

At a high level, Bayesian inference updates beliefs before seeing the data (given by the prior),
so that parameters that are compatible with the data (high likelihood) become more probable
under our new beliefs (given by the posterior).

Applying Bayes rule to our toy regression problem (skipping the maths of how to do it for
the moment) gives beliefs centred around models that fit the observed data-points. Sampling
from that distribution gives the plot below:
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The light gray lines show the samples from the prior distribution that we had before. The
small black bars show data points (with error bars). The magenta lines show 12 samples
from the posterior distribution. As is usually the case (if our data is useful), the posterior
distribution concentrates in a much smaller region of parameter space than the prior. The
corresponding straight-line functions are also less spread out. Under the posterior, we only
believe that lines passing close to the data are plausible.

Zooming in to the same diagram, we can get a better view of the data and the possible
models sampled from the posterior distribution:
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The plausible lines sampled from the posterior distribution naturally spread out as we move
away from the observed data. The statistical machinery automatically tells us that we are
less certain about where the function is as we move away from where we have measured it.

5. You will see some books and papers referring to likelihood of the data, although that goes against traditional
usage (cf MacKay, p29). We consider the likelihood of different parameters given the data.

MLPR:w3b Iain Murray and Arno Onken, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2019/ 4

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2019/


3.3 Computing the Posterior

For general models, the posterior distribution won’t have a convenient form that we can
represent with a few parameters. The likelihood is a product of N terms for N datapoints,
and that product could potentially create a complicated function.

A conjugate prior to a given likelihood is a prior where the product of the prior and likelihood
combines to give a distribution with the same functional form as the prior. A Gaussian prior
over linear regression weights is conjugate to its linear-Gaussian likelihood, and we obtain a
Gaussian posterior:

p(w | D) ∝ p(w) p(y |w, X), (8)

∝ N (w; 0, σ2
wI) ∏

n
N (y(n); w>φ(x(n)), σ2

y ), (9)

∝ N (w; 0, σ2
wI)N (y; Φw, σ2

y I), (10)

where φ(x) is an augmented input vector as in earlier notes, for example φ(x) = [x 1]>

for fitting a straight line with scalar inputs. As before, Φ is a matrix with these augmented
vectors in the rows. Here we’ve assumed a zero-mean prior, and a spherical prior covariance.
In Murphy’s notation for the prior parameters: w0=0 and V0=σ2

wI, which set our beliefs
after observing 0 datapoints. We could set the prior mean w0 and covariance V0 to other
values, for example to allow the “bias” parameter that specifies the intercept to vary more.

The posterior is proportional to the exponential of a quadratic in w, which means it is a
Gaussian distribution. Murphy writes the answer in the form: p(w | D)=N (w; wN , VN), the
beliefs after observing N datapoints. As in a tutorial exercise, we can identify the posterior
mean wN and covariance VN from the linear and quadratic coefficients of w inside the
exponential. It’s just linear algebra grunt work, which results in:

VN = σ2
y (σ

2
y V−1

0 + Φ>Φ)−1 (11)

wN = VNV−1
0 w0 +

1
σ2

y
VNΦ>y. (12)

Or replace Φ with X if you haven’t applied a basis function transformation. We are not
expecting you to memorize these expressions!

4 Recommended reading
Bishop Section 1.2.3 introduces the Bayesian interpretation of probabilities. Section 3.3 is on
Bayesian linear regression.

Murphy Chapter 7 introduces linear regression with a probabilistic perspective from the
beginning. Bayesian linear regression is in Section 7.6. There is a demo in Figure 7.11 that
comes with code.

5 Possible exercises
Set a prior over parameters that lets the intercept of the function vary more, while maintain-
ing the same distribution over slopes as in the demonstration in this note. Plot the straight
line functions corresponding to some parameter vectors sampled from your new prior.

If you want to work through the maths and implement a Bayesian inference problem, the
following work-up exercise may test if you understand how to go about it. Assume a
Gaussian prior over a single number m. Sample a value for m from this prior and generate
N=12 datapoints from N (m, 1). What should your posterior be given these observations?
You could run a series of trials where you draw a value for m from the prior, simulate data
and compute a posterior. How often is the true value of m within ± one posterior standard
deviation of your posterior mean?
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6 Further detail
Definitely non-examinable: Chapter 3 of David MacKay’s book, describes the undergraduate
physics question where he first learned about Bayes’ rule for inferring an unknown parameter.
Depending on your background, you may find that story interesting.

Historical note: Using probabilities to describe beliefs has been somewhat controversial over
time. There’s no controversy in Bayes’ rule: it’s a rule of probability theory, a direct conse-
quence of the product rule. It’s using Bayes’ rule to obtain beliefs, rather than frequencies,
that has been controversial.
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