Variational Inference $w_{z} = p(w|p) \qquad w_{z}$ $(w_{z}, m, V) = (0)$ $(w_{z}, m, V) = (0)$ (0) ($= - \mathbb{E}_q [\log p(D|w)] - \mathbb{E}_q [\log p(w)] + \mathbb{E}_q [\log q(w;m,v)] + \log p(D);$ E[neg. log likelihood] DKL (q, 11 p(x)) Marginal Likelihood = J + log p(D) > O (Gibbs' inequality) Marginal Likelihood bound log p(D) > - J Minimize J wit (m,V) and Ow, ... Approx. Posterior well, Find good mode

Week 11 events

No MLPR lectures (last lecture Thurs 21 Nov.) Ed-Intelligence have two (Links also in "week 11" of mlpr notes) events! Mini NeurIPS 6pm Wed 27 Nov, AT LT2 tinyurl.com/mini-neurips-2019 Biases, failure + fairness in AI 6pm Fri 29 Nov, AT LT 5 to-err-is-machine. eventbrite.co.u

MLPR 228 1

Minimize J Need tricks to make SGD work Trick # 1, Reparameterize to make unconstrained SGD on on break, ow < O undefined On x O unstable Set $G_w = e^a$, optimize a V positive definite, symmetric Compute graph $m = \frac{1}{\sqrt{6}w} = e^{a}$ $\int a$ $V = LL^{T}$ $L_{ij} = \begin{cases} e^{L_{ii}} & i=j \\ L_{ij} & i>j \\ 0 & i<j \end{cases}$ ↑ Ĺ could evaluate J. 퍼 backprop, do SGD on ≏r Ľra

2019 629 2

Evaluating the cost, 5 DKL (qll p(w)) this is "easy" Costen Gaussian (Look it up in Madrix Cookbook, Likelihood term $E_q[w_p(D/w)]$ $= \left[\sum_{n=1}^{N} \log p(y^{(n)} | \underline{x}^{(n)}, \underline{w}) \right]$ For logistic regression -> 1D integral do numerically Trick # 2 "Reparameterization frick" Stochastic estimate $\mathbb{E}_{N(\underline{w};\underline{m},V)}\left[f(\underline{w})\right] \approx \frac{1}{5} \sum_{s} f(\underline{w}^{(s)})$ $= \mathbb{F}_{N(\mathcal{V};\mathcal{Q},\mathbb{I})} \left[f(L\mathcal{V} + \mathfrak{m}) \right]$ $\approx f(\underline{\nu} + \underline{m}), \underline{\nu} - N(\underline{0}, \underline{\mathbb{I}})$ (Using only sample!) 2019 629 3

Estimate of gradients $\nabla_{\underline{m}} E_{N(\underline{w};\underline{m},\nu)} [f(\underline{w})]$ $\approx V_m f(L \not = m) = V_w f(w) \Big|_{w=L \not = t_m}$ $\nabla_{L} \#_{N(w;m,V)} [f(w)]$ $\approx V_{L} f(L \not= t m)$ $= \nabla_{\underline{w}} f(\underline{w}) \Big|_{\underline{w} = L_{\underline{v}} + \underline{m}} \underline{v}$ Use some Vy f(m) derivatives as normal but on noisy weights.

Unsupervised learning, Clustering

"Human brains are good at finding regularities in data.

One way of expressing regularity is to put a set of objects into groups that are similar to each other.

For example, biologists have found that most objects in the natural world fall into one of two categories: things that are brown and run away, and things that are green and don't run away. The first group they call animals, and the second, plants."

— David MacKay, ITILA textbook p284

Oranges and Lemons data

Stanley

Stanford Racing Team; DARPA 2005 challenge

http://robots.stanford.edu/talks/stanley/

How to stay on a road?

Perception and intelligence

(a) Beer Bottle Pass

It would look pretty stupid to run off the road, just because the trip planner said so.

(b) Map and GPS corridor

Clustering to stay on the road

Stanley used a Gaussian mixture model. The cluster just in front is road (unless we already failed).