
MLPR Tutorial1 Sheet 2
Reminders: Attempt the tutorial questions before your tutorial. Many of the best-performing
students discuss the class and tutorial work with their peers during the week. You can seek
clarifications and hints on the class forum. Full answers will be released after the tutorial.

This tutorial is largely just maths. While I ask for a small numerical experiment in the
middle, there’s no real data, and no machine learning. However, throughout the course
we will derive models and algorithms that use multivariate Gaussian distributions. And
other machine learning methods share some of the same maths. I’ve put this material on the
tutorial, because it’s useful stuff, and you need to work through it at your own pace. In the
mean time, you’re also working on assignment 1, which involves some data!

1. Warm-up exercise:

If a and b are D×1 column vectors and M is a D×D symmetric matrix, show that

a>Mb = b>Ma.

You wouldn’t need to show this result in an exam unless you were explicitly asked
to. In some working (like for the next question) you could just state that it’s true for
symmetric M.

2. Identifying a Gaussian:

As part of a derivation, we may need to identify the probability density function of a
vector x, up to a constant with respect to x. For example:

p(x) ∝ exp
(
−x>Ax− x>c

)
,

where A is a symmetric invertible matrix. As this distribution is proportional to the
exponential of a quadratic in x, it is a Gaussian: p(x) = N (x; µ, Σ).

Identify which Gaussian x comes from by identifying the mean µ and covariance Σ in
terms of A and c. The easiest method is to compare p(x) to the standard form for the
multivariate Gaussian PDF (given in class).

The answer you should be able to show is:

Σ =
1
2

A−1, µ = −1
2

A−1c.

3. Creating a 2D multivariate Gaussian, and a simple experiment:

The first element of a vector has p(x1) = N (x1; m, σ2).

A second element is generated according to the following process:

x2 = αx1 + ν, ν ∼ N (0, n2).

Here x2 depends on x1, but the noise term ν is independent of x1.

Recall that a linear combination of Gaussian values is Gaussian distributed.

a) The joint distribution of the vector x=[x1 x2]
> is Gaussian, and so takes the form

p(x) = N (x; µ, Σ). Identify µ and Σ.

b) Turning to a computer: pick a setting for each of the parameters m, σ, α, and n,
and simulate samples from the above process. Estimate the mean and covariance

1. Parts of this tutorial sheet are based on previous versions by Amos Storkey, Charles Sutton, and Chris Williams

MLPR:tut2 Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/ 1

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/

from the samples. Do your estimates of the mean and covariance agree with their
theoretical values?

Putting a standard error on your estimates of the means should be straightforward.
You may have to use some creativity to put error bars on your estimates of the
covariances.

4. Sampling Gaussians, and matrix decompositions:

[This question has quite a lot of detail on computation and linear algebra, which you can skim
over on first reading. You don’t actually need to understand the decompositions in detail, or
know how to call them in Matlab or Python, to be able to answer some of the questions.]

In lectures we saw that we can sample from a multivariate Gaussian x ∼ N (0, Σ) by
drawing a vector of standard normals, ν ∼ N (0, I), and setting x=Aν, for a matrix A
where AA>=Σ.

The lower-triangular Cholesky decomposition will decompose a symmetric positive-
definite2 covariance into Σ = LL>.
Matlab/Octave: L = chol(Sigma, 'lower');
Numpy: L = np.linalg.cholesky(Sigma)
This decomposition can be used to draw samples, with A=L above.

A triangular decomposition makes computing most things we might want to know
about a covariance quick and easy. Cholesky decompositions are widely used. We can
quickly find the determinant: |L| = ∏d Ldd where |Σ| = |L|2, or more frequently
log |L| = ∑d log Ldd. We can also solve linear systems3: L−1b takes similar time
to a matrix-vector multiply Lb. In Matlab/Octave replace inv(L)*b with L\b and
inv(Sigma)*b with L'\(L\b). In Python use scipy.linalg.solve_triangular, and
scipy.linalg.cho_solve.

a) Sometimes instead of decomposing the covariance matrix, we have the Cholesky
decomposition of the precision matrix, Σ−1 = CC>, where C is lower-triangular.
How would we use C to sample from N (0, Σ)?

b) Real symmetric matrices, like covariance matrices, also have a decomposition of
the following form4:

Σ = QΛQ>,
where Λ is a diagonal matrix of eigenvalues, and the columns of Q are the
eigenvectors of Σ.

i) Describe how to sample from N (0, Σ) using this decomposition.

ii) Q is an orthogonal matrix, corresponding to a rigid rotation (and possibly
a reflection). Describe geometrically (perhaps in 2D) how your sampling
process transforms a cloud of points drawn from a standard normal.

c) Yet another possible decomposition is the principal square root5: Σ = Σ1/2Σ1/2,
where Σ1/2 is symmetric. None of the decompositions discussed so far are the

2. Unfortunately, it doesn’t work for semi-definite covariances with zero determinant.
3. We do not usually evaluate an expression A−1c by inverting A and then multiplying c by A−1. There are faster
and more numerically stable way to solve A−1c. The method you should use depends on the properties of A.
In common situations, Matlab’s A\c does something sensible and should be preferred to inv(A)*c. But if you’ve
cached a decomposition of A, you should probably make use of it.
4. https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix#Real_symmetric_matrices
We can use this decomposition even when the determinant is zero.
5. Non-examinable: Σ1/2 = QΛ1/2Q>, using Q and Λ from the eigendecomposition, and Λ1/2 simply replaces
each eigenvalue on the diagonal with its square root. However, it would be better to compute it with sqrtm, and
you are unlikely to use it at all. I have only once found it useful.

MLPR:tut2 Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/ 2

https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix#Real_symmetric_matrices
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/

same. In this part we’ll try to understand how they’re related.

i) Consider two different decompositions Σ = AA> = BB>. We’ll assume the
matrices are full rank so that we can write B = AU. Show that UU>=I, the
identity matrix, which means that U is an orthogonal matrix.

ii) Explain geometrically why if computing Aν from ν ∼ N (0, I) is a way to
sample from N (0, Σ), computing Bν=AUν will be as well.

MLPR:tut2 Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/ 3

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/

	 MLPR Tutorial Sheet 2

