
Logistic Regression
There is a lot more that could be said about linear regression. But I’m going to leave most of
that for statistics courses. There is also a lot more that could be said about gradient-based
optimization, and I’ll return to some of it later. In this note we’ll add a non-linearity to our
model, and introduce one of the most used machine learning models.

Transforming the output

We saw that we could attempt to fit the probability of being in a particular class with
straightforward linear regression models. However, we are likely to see outputs outside the
range [0, 1] for some test inputs. We will now force our function to lie in the desired [0, 1]
range by transforming a linear function with a logistic sigmoid:

f (x; w) = σ(w>x) =
1

1 + e−w>x
.

As with linear regression, we can replace our input features x with a vector of basis function
values φ(x). I won’t clutter the notation with this detail. Wherever you see x, know that you
can replace this input vector with a version that has been transformed in any way you like.

Loss function

As before, we wish to fit the function to match the training data closely, If the labels are zero
and one, y ∈ {0, 1}, we could minimize the square loss

N

∑
n=1

(
y(n) − f (x(n); w)

)2.

However, the Logistic Regression model uses the interpretation of the function as a probability,
f (x; w) = P(y=1 | x, w), more directly. Maximum likelihood fitting of this model maximizes
the probability of the data:

L(w) =
N

∏
n=1

P(y(n) | x(n), w),

for the model with parameters w. Equivalently, we minimize the negative log-probability of
the training labels, which for this model can be written as:

NLL = − log L(w) = −
N

∑
n=1

log
[
σ(w>x(n))y(n)(1−σ(w>x(n)))1−y(n)

]
,

or
NLL = − ∑

n:y(n)=1

log σ(w>x(n))− ∑
n:y(n)=0

log(1− σ(w>x(n))).

There is a trick to write the cost function more compactly. We transform the labels to be
z(n) ∈ {−1,+1} where z(n) = (2y(n)−1), and noticing σ(−a) = 1− σ(a), we can write:

NLL = −
N

∑
n=1

log σ(z(n)w>x(n)).

As before, either cost function can have a regularizer added to it to discourage extreme
weights.

Maximum likelihood estimation has some good statistical properties. In particular, asymp-
totically (for lots of data) it is the most efficient estimator. Although the loss can be extreme
where confident wrong predictions are made, which could mean that outliers cause more
problems than with the square loss approach.

MLPR:w3c Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/ 1

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/


Gradients

The final required ingredient is the gradient vector ∇wNLL. A gradient-based optimizer can
then find the weights that minimize our cost.

The derivative of the logistic sigmoid is as follows1:

∂σ(a)
∂a

= σ(a)(1− σ(a)),

which tends to zero at the asymptotes a→ ±∞.

I like to derive the derivatives using the third form of the cost function NLL, because it’s
shorter, although I think most books use the first form. We’ll get an equivalent answer. For
brevity, I’ll use σn = σ(z(n)w>x(n)). We then apply the chain rule:

∇wNLL = −
N

∑
n=1
∇w log σn = −

N

∑
n=1

1
σn
∇wσn = −

N

∑
n=1

1
σn

σn(1− σn)∇wz(n)w>x(n),

= −
N

∑
n=1

(1− σn)z(n)x(n).

Interpretation: σn is the probability assigned to the correct training label. So when the
classifier is confident and correct on an example, it contributes little to the gradient. Stochastic
gradient descent will improve the examples the classifier gets wrong, or is less confident
about, by pushing the weights parallel to the direction of the corresponding input.

Some things to know about gradients

Whenever we can compute a differentiable cost function, it should always be possible to
compute all of the derivatives at once in a similar number of operations to one function
evaluation. That’s an amazing result from the old field of automatic differentiation. (Caveat it
might take a lot of memory.) So if your derivates are orders of magnitude more expensive
than your cost function, you are probably doing something wrong.

Despite a long history, few people use fully automatic differentiation in machine learning.
There are machine learning tools like Theano, and Tensor Flow that will do most of the work
for you. But some people2 are still needing to do some work by hand so that those tools can
work on all the models that we might build.

Whether you are differentiating by hand, or writing a compiler to compute derivatives, you
need to test your code. Derivatives are easily checked by finite differences:

∂ f (w)

∂w
≈ f (w+ε/2)− f (w−ε/2)

ε
,

and so should always be checked. Unless the weights are extreme, I’d normally set ε=10−5.
You have to perturb each parameter in turn to evaluate one element of a gradient vector
∇w f (w). Therefore, for D-dimensional vectors of derivatives, the computational cost of
finite differences scales D times worse than well-written derivative code, as well as being
less accurate. Finite differences are a useful check, but not for use in production.

Check your understanding

• We need to use iterative optimizers like stochastic gradient descent to fit logistic
regression. If we swapped from negative-log-likelihood to the square loss, explain
whether we would be able to fit the model using a single \ or lstsq fit.

1. It’s not hard to show, but I’d give you this result in an exam if you needed it.
2. Your lecturer is one of them: https://arxiv.org/abs/1602.07527.

MLPR:w3c Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/ 2

http://arxiv.org/abs/1502.05767
https://arxiv.org/abs/1602.07527
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/


• The expression that I’ve given for the logistic regression gradient ∇wNLL looks
different from the ones given in many textbooks. Describe how to quickly numerically
check that the different-looking expressions are equivalent, without having to do any
detailed mathematics. (You could also do a check!)

• We have some data where we know the target outputs y should always be positive. If
we fit standard linear regression, we could predict negative values. How might we fix
this deficiency? Can we still do a standard \ or lstsq fit, or do we need to swap to an
iterative optimizer?

Further Reading

All machine learning textbooks should have a treatment of logistic regression. You could
read an alternative treatment to this note in Barber 17.4.1 and 17.4.4. Or Murphy: quick
introduction section 1.4.6, then Chapter 8, which has an in depth treatment beyond this note.

Tom Minka has a review of alternative batch optimizers for logistic regression
http://research.microsoft.com/en-us/um/people/minka/papers/logreg/
(Stochastic gradient methods were less popular then, and were not considered.)

For a large-scale practical tool that uses stochastic optimization, check out Vowpal Wabbit:
https://github.com/JohnLangford/vowpal_wabbit/wiki
Its framework includes support for logistic regression. It has various tricks to train fast. It
can cope with data, like large-scale text corpora, where you might not know what you want
your features to be until you start streaming data.

We don’t have to transform a linear function with the logistic sigmoid. We could instead
create a ‘probit’ model, which uses a Gaussian’s cumulative density function (cdf) instead
of the logistic sigmoid. We can also transform the function to model other data types. For
example, count data can be modeled by using the underlying linear function to set the
log-rate of a Poisson distribution. These alternatives can be unified as “Generalized Linear
Models” (GLMs). R has a widely used glm library.

There is a cool trick with complex numbers to evaluate derivatives to machine precision,
which I’d like to share:
http://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/
It is no faster than finite differences though, so shouldn’t be used, except as a check.

MLPR:w3c Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/ 3

http://research.microsoft.com/en-us/um/people/minka/papers/logreg/
https://github.com/JohnLangford/vowpal_wabbit/wiki
https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Generalized_linear_model
https://en.wikipedia.org/wiki/Generalized_linear_model
http://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/

	 Logistic Regression
	 Transforming the output
	 Loss function
	 Gradients
	 Some things to know about gradients
	 Check your understanding
	 Further Reading


