
More on optimization
A surprisingly large space of machine learning methods can be fitted to data using fairly
simple variants of stochastic gradient descent. SGD doesn’t usually find the optimal parame-
ters of a cost function to many significant figures. Although convergence to an optimum
often isn’t the goal in machine learning settings, we often use early stopping.

However, it’s possible that in applications you face in future, you’ll want something more
sophisticated. This note sketches some of the options as a starting point for further reading.
As motivation, here are some things that simple stochastic gradient descent doesn’t do:

1) Fit constrained problems (unless reparameterized by the user to be unconstrained).

2) Jump straight to the optimum if the cost functions has an analytic solutions. For
example, if the cost function is a quadratic form. We’d also like to get close to the
optimum if the cost function is close to one with a neat solution.

3) Accurately find a local optimum to many significant figures.

4) Fit some of the parameters to be exactly zero, as is optimal for sparse regularizers such
as L1.

There are alternative optimizers that do better on some or all of these points.

EM
We previously saw the EM algorithm, which is a bound-based algorithm for models with
latent variables. We only applied it to mixtures of Gaussians. If applied to a “mixture” of one
Gaussian, EM finds the maximum likelihood parameters in one update. If a mixture of K=2
Gaussians is fitted to two widely-separated groups of points, then once the parameters are
close to optimal, the responsibilities are close to zero and one. In one more step the algorithm
(approximately) sets the Gaussian components to the maximum likelihood fits of each group.
This rapid convergence in easy cases is one of the reasons EM is popular. Another reason is
that EM is an easy way to fit a constrained problem; the updates automatically give valid
parameters.

Newton’s method
Newton’s method uses both the current gradient of the cost function E,

g = ∇wE(w)|w=w(t) ,

and the Hessian1,

H =
∂2E(w)

∂wiwj

∣∣∣∣∣
w=w(t)

,

evaluated at the current parameters w(t). The Newton update is:

w(t+1) = w(t) − H−1g.

If the cost function is a quadratic with optimum w∗ and Hessian H,

E(w) =
1
2
(w−w∗)>H(w−w∗) + constant,

1. Cross-reference: The Hessian, the matrix of second derivatives of a cost function E, is also used in the Laplace
approximation, where the cost function is the negative log-posterior.

MLPR:w10b Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/ 1

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/

then one update takes the weights to the optimum:

g = H(w(t) −w∗)

w(t+1) = w(t) − H−1H(w(t) −w∗) = w∗.

Informally, when the cost function is nearly quadratic, which Taylor series suggest it usually
will be close enough to an optimum, convergence is fast.

Unlike gradient descent, we don’t need to tell Newton’s method whether we are maximizing
or minimizing a function. If we apply Newton’s method to a quadratic function we will hop
straight to its minimum (if H is positive definite) or its maximum (if H is negative definite)
automatically. A downside is that saddle-points are also attractors in Newton’s method, and
the optimizer could get stuck at one, just as it could converge to a local optimum.

Newton’s method seems appealing, because the basic version has no free parameters.
However, if the matrix H is poorly-conditioned, Newton’s method can take large steps
and diverge. The method can be made more robust, but is then also more complicated.
The Hessian can be made better conditioned by adding a constant to the diagonal. Also a
step-size parameter is often introduced, w(t+1) = w(t) − ηH−1g, where the step-size η must
be set or adapted somehow.

Aside: I’ve outlined Newton’s method for optimizing multiple parameters, because most
machine learning models have many parameters. However, the simple one-dimensional
version of Newton’s method is also commonly-used in numerical computing. Sometimes
when you evaluate a standard function in a numerical library, internally it finds the answer
by solving an equation using Newton’s method.

Lower-memory algorithms
Storing the entire Hessian matrix, H, is infeasible for moderately large neural networks.2

There are Hessian free implementations of Newton’s method and related algorithms, which
can numerically estimate H−1g or quantities like it, without ever computing the Hessian
itself. There is also a large collection of other low-memory optimizers that find sensible
update directions using only gradient evaluations. You don’t need to know how they work
for this course. Personally I like to know how things work, and have worked through the
details of these algorithms at some point, but I can’t honestly say I keep all the details in my
head. As a user, I tend to treat them as “black-boxes”.

In assignment 2, Matlab/Octave users used a variant of non-linear conjugate gradients, while
Python users used a low-memory quasi-Newton method called L-BFGS. These methods are
often good on small to medium problems, as they often converge quickly, and don’t have
tweak parameters to set. They’re not the most popular methods for large neural networks,
and large-scale problems. However, anecdotally I know people in industry who use them on
large problems, and there is some literature supporting their wider use for neural networks3.

Proximal methods, example method for L1 regularization
[This section on proximal methods is non-examinable]

There is a large literature on methods for fitting models with L1 regularization (Murphy
13.3–13.4 discusses some of these). I’ve picked the basic version of one of them because it’s
fairly simple4, although before using a method in practice you would want to read about its
refinements, or other methods, or use existing software.

2. For example, with a million parameters, a 106×106 matrix of 64 bit floating point numbers needs 8 TB of RAM.
3. “On optimization methods for deep learning”, Le et al., ICML 2011.
4. I learned about it in Convex Optimization with Sparsity-Inducing Norms, Bach et al., 2010.

MLPR:w10b Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/ 2

https://en.wikipedia.org/wiki/Saddle_point
https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization#Higher_dimensions
https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
https://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient
https://en.wikipedia.org/wiki/L-BFGS
http://ai.stanford.edu/~quocle/LeNgiCoaLahProNg11.pdf
http://www.di.ens.fr/~fbach/opt_book.pdf
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/

Given the L1 cost function,

c(w) = E(w) + λ ∑
d
|wd| = E(w) + λ‖w‖1.

we could try to upper-bound the complicated data-dependent term E(w) with a simple
quadratic function at the current parameters w(t):

Ẽ(w; w(t)) = E(w(t)) +
[
∇wE(w)|w=w(t)

]>
(w−w(t)) +

L
2
(w−w(t))>(w−w(t)).

The first two terms are a local linear approximation to the training error. For the third term
we have assumed there is a ‘Lipschitz’ constant L that we can find for our error function
such that we’ll get an upper bound: Ẽ(w) ≥ E(w).

Now, like in EM, if we have a bound that is tight at the current parameters, we can optimize
it to obtain new parameters w(t+1) that have lower cost. We then form a new bound
E(w; w(t+1)) that’s tight at the new parameters w(t+1) and repeat. We could ensure that each
update improves the cost, by performing a line-search to find an L that works. In practice
we may get faster convergence by setting L larger, even though individual updates could
make the cost worse (end of Murphy 13.4.3.2).

To implement the method, we need to be able to find the minimum of

c̃(w; w(t)) = Ẽ(w; w(t)) + λ‖w‖1.

Because the first term is a simple axis-aligned quadratic function, after a few lines of linear
algebra, we can find a closed-form solution to

w(t+1) = arg min
w

c̃(w; w(t)).

To compute this solution we first find the locally optimal weights, ignoring the regularizer,
which corresponds to a steepest descent update:

w′ = w(t) − 1
L
∇wE(w)|w=w(t)

These weights are then individually shrunk and thresholded:

w(t+1)
d = w′d max

(
0, 1− λ

|w′d|

)
.

The thresholding means that some of the weights might be set to zero.

There is a similarity with Newton’s method: we make a local approximation to the function
that we can optimize in closed form, and repeat. The methods can be combined: proximal-
Newton methods use the Hessian to form a quadratic approximation, but minimizing a
general quadratic added to a L1 regularizer is harder.

Final thoughts
There are standard classes of constrained but convex optimization problems such as “linear
programs” and “quadratic programs”, that have practical algorithms to find the global
optimum. For example, a popular classifier called the Support Vector Machine (SVM) can
be fitted with a quadratic program solver (although faster more specialized solvers are
usually used). There’s a school of thought that it’s worth working hard to cast a problem
as a standard convex optimization as found in a textbook (e.g., Boyd and Vandenberghe,
2004), and then the algorithms have been worked out. I think it’s fair to say that much of
machine learning has shifted towards using simple optimizers on non-convex problems.
There will always be applications where being able to reproducibly find a global optimum
will be valued however.

MLPR:w10b Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/ 3

http://www.stanford.edu/~boyd/cvxbook/
http://www.stanford.edu/~boyd/cvxbook/
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/

What you should know
We only covered some superficial details very quickly, so you are not expected to be able
to recall the details of all of these methods. You are expected to understand the idea of
iteratively making a local approximation and optimizing it, which is common to several
methods. Also, understand the bound-based optimization idea, which ensures convergence
to a local optimum. You should have an awareness that there is a rich variety of optimization
algorithms, and given a description, be able to comment on their possible pros and cons.

MLPR:w10b Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/ 4

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2018/

	 More on optimization
	 EM
	 Newton's method
	 Lower-memory algorithms
	 Proximal methods, example method for L1 regularization
	 Final thoughts
	 What you should know

