Unsupervised learning, Clustering

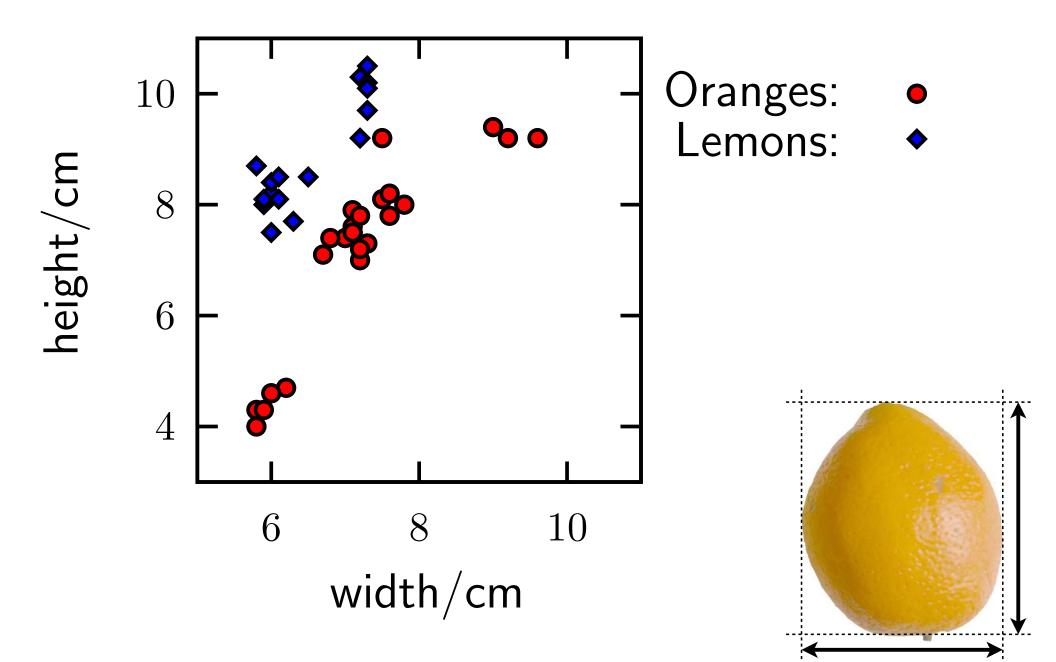
"Human brains are good at finding regularities in data.

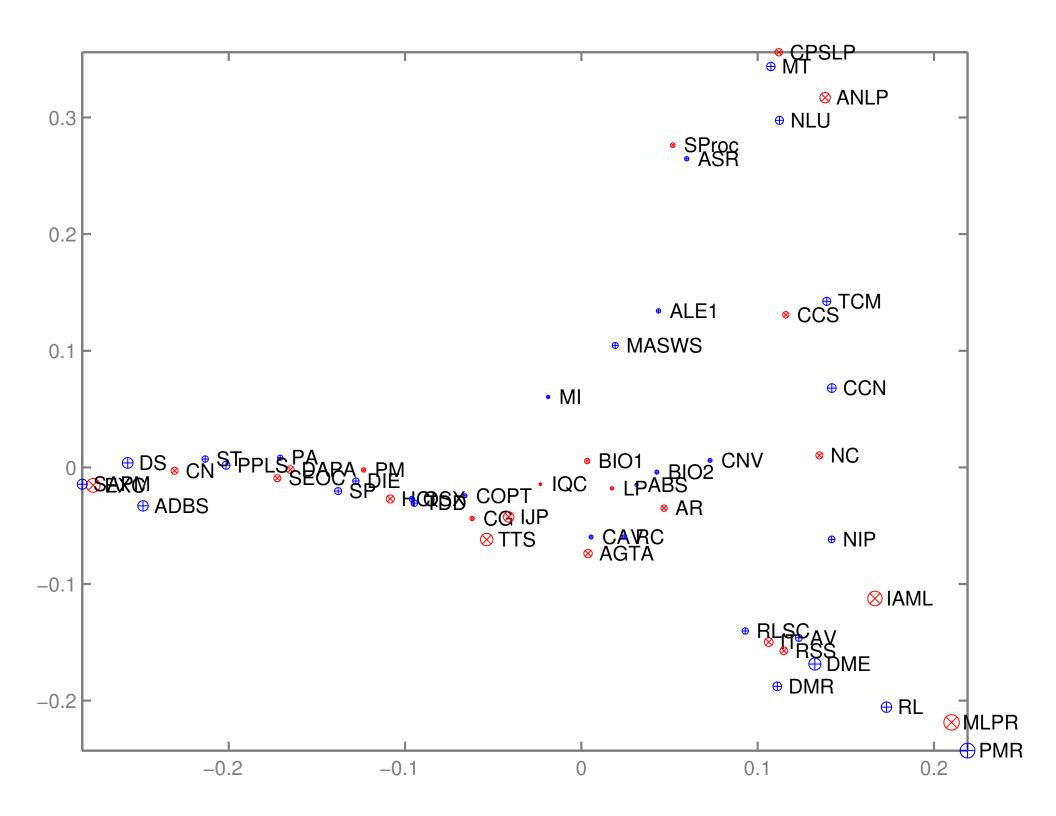
One way of expressing regularity is to put a set of objects into groups that are similar to each other.

For example, biologists have found that most objects in the natural world fall into one of two categories: things that are brown and run away, and things that are green and don't run away. The first group they call animals, and the second, plants."

— David MacKay, ITILA textbook p284

Oranges and Lemons data





Stanley

Stanford Racing Team; DARPA 2005 challenge

http://robots.stanford.edu/talks/stanley/

How to stay on a road?

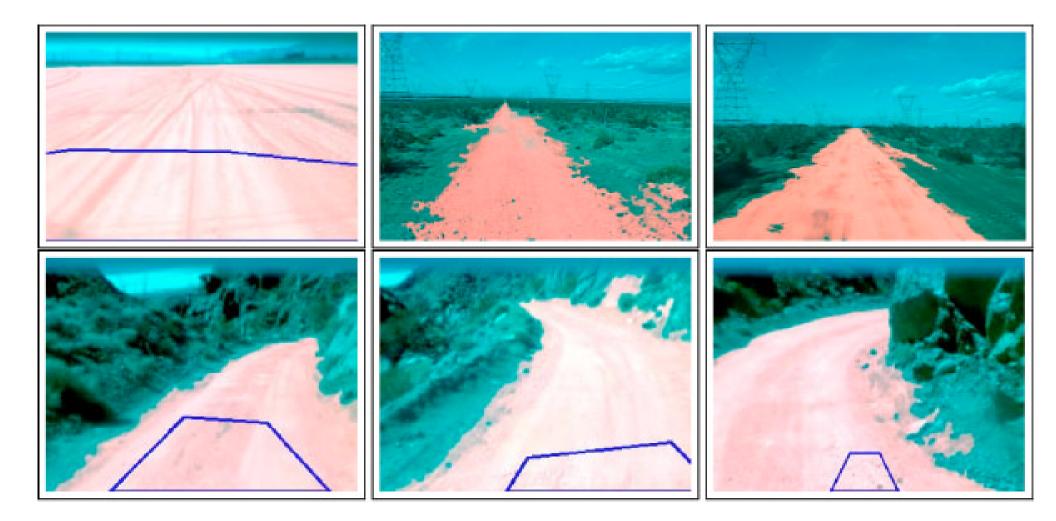
Perception and intelligence

(a) Beer Bottle Pass

It would look pretty stupid to run off the road, just because the trip planner said so.

(b) Map and GPS corridor

Clustering to stay on the road

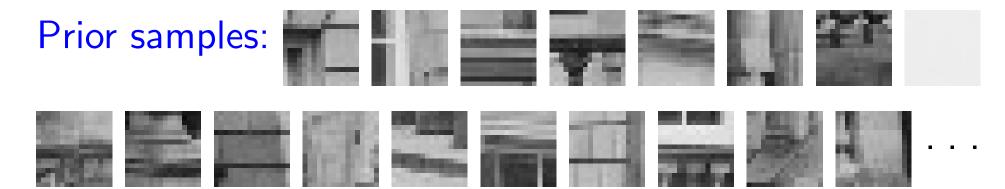


Stanley used a Gaussian mixture model. The cluster just in front is road (unless we already failed).

Example: Image denoising

$p(\mathbf{x} \mid \mathbf{y}) \propto p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})$

Likelihood: e.g. $\mathcal{N}(\mathbf{y}; \mathbf{x}, \sigma^2 I)$



Zoran and Weiss, ICCV 2011

(a) Blurred

(b) Krishnan et al.

(c) EPLL GMM

 $p(\mathbf{x}) = Mixture of Gaussians fitted to patches$

Variational Inference p(w|D)-q(w;m,v)Optimize { @ entropy Cost function: E['Energy'] -H[q] $J = -E_q \left[\log p(D|w) \right] - E_q \left[\log p(w) \right] + E_q \left[\log q(w) \right]$ $D_{\kappa L}(q(w) || p(w))$ E[neg. log likelihood] Marginal Likelihood bound $\log p(D) \ge -J$ Minimize J wrt (m, V) and 5w, 5g, ... Approx. posterior Find good model

Minimize J

Like SGD, but need some tricks Trick #1 Unconstrained Optimization IS we do SGD on σ_y^2 might get revalues Optimize log σ_y^2 instead V positive definite, symmetric $V = LL^T$, L lower triangular Diagonal is the.

We create another matrix

i ≠ s $\tilde{L}_{ij} = \begin{cases} L_{ij} \\ log L_{ii} \end{cases}$ i=j Optimizer has $\widehat{L} \rightarrow L \rightarrow V = LL^{-} \rightarrow ... cost$ exp diag SGD on I < backprop <

Evaluating the cost DKL (q"p), or "Entropy terms" We can evaluate these. Likelihood tom. Eq [Log p (D/m)] $= \underbrace{F_{q}}_{\sum_{n=1}^{N}} \operatorname{cog}_{p}(y^{(n)}| \underline{x}^{(n)}, \underline{w}) \right]$ For logistic regression: -> 1D integral do numerially. Stochastic estimate: Trik#2 Reparameterization truck $\mathbb{E}_{N(\underline{w};\underline{m},v)} [f(\underline{w})]$ = $\mathbb{E}_{N(2;0,I)} \left[f(m+L\nu) \right]$ Sample w, by w~N(0,I) ビニッキレビ

Monte Corlo estimite $\mathcal{X} = \frac{1}{5} \sum_{s=1}^{5} f(\underline{m} + \underline{1} \underline{y}^{(s)})$ $\mathcal{Y}^{(s)} \sim \mathcal{N}(0, \mathbb{I})$ 5=1 $\approx f(\underline{m} + \underline{L}\underline{v}), \underline{v} \sim N(0, \underline{I})$ $\nabla_m E_{N(w;m,v)} [f(w)]$ ~ Pm f (m + Lz) VL EN(": m,V) [f(=)] × PL f(m+LY) $\nabla_{\underline{w}} f(\underline{w}) |_{\underline{w}=\underline{m}+\underline{L}\underline{v}} \mathcal{V}^{\mathsf{T}}$ Need derivatives of log likelihood as usual.

(Also find V~ for SGD from VZ)

Mixtures of Gaussians

