Administration

Thank you for survey responses. Will email when digested.

Assignment 2 is out.
Remember tutorial sheets
Ask - on the Hypothesis forum

- and you will receive
$\dagger$ Instructions on website
* help, and answers if you have put effort in.

Reverse mode differentiation Piece of computation:


Use standard rules:


$$
\begin{aligned}
& C=\cos A \Rightarrow \bar{A}=\bar{C} \odot \sin A \\
& C=A B \Rightarrow \bar{A}=\bar{C} B_{2}^{\top} \bar{B}=A_{-}^{\top} \bar{C} \\
& C=A+B \Rightarrow \bar{A}=\bar{C}, \bar{B}=\bar{C} \quad \begin{array}{l}
\text { stored in } \\
\text { forward }
\end{array} \\
& C=A^{\top} \Rightarrow \bar{A}=\bar{C}_{\pi}^{\top} \varliminf_{\text {Passed in by }} \\
& \text { backdrop }
\end{aligned}
$$

Multiple children


$$
\left.\bar{A}=\begin{array}{cc}
\bar{C}_{1} & \bar{C}_{2} \\
\downarrow & \downarrow \\
\bar{A} \\
\bar{A}_{1}
\end{array}+\begin{array}{c}
\text { Apply rules } \\
\bar{A}_{2}
\end{array}\right] \begin{gathered}
\text { MLPR } 2017 \\
\text { sponately } \\
\text { for chiller (1) } \\
\text { and add }
\end{gathered}
$$

Auto encoder


Learning task

$$
\underline{f}(\underline{x}) \approx \underline{x}
$$

not $\begin{aligned} & \text { useful }\end{aligned}\left[\begin{array}{l}\text { def autoencode }(x) \text { : } \\ \text { return } x \\ h=n p \cdot \operatorname{dot}(I, x) \\ \text { retum } h\end{array}\right.$
Dimensionality Reduction


$$
\begin{aligned}
& \underline{h}=g^{(1)}\left(w^{(1)} \underline{x}+\underline{b}^{(1)}\right) \\
& \underline{f}=g^{(2)}\left(w^{(2)} \underline{h}+\underline{b}^{(2)}\right)
\end{aligned}
$$

$\Rightarrow$ Use $h$ as inputs to other ML method.
$V$ isualization
Set $k=2$


Use some labels 80 class 0
 makes sense..

Or do classification in this space after learning mapping on unlabeled data.


Sparse Autoemoders
Force most elements of $h$ to be zero.
Denoising Autoen colors
While training we mask out some of the inputs - set some $x_{d}$ to zero.

M mask vector, of random 0 's \& 1's
Cost on $\left\|\underline{f}\left(\underline{x}^{(n)} \odot \underline{m}\right)-\underline{x}^{(n)}\right\|^{2}$ one example
$\operatorname{Cos} t$ function $\sum_{\underline{m}} p(n) \sum_{n=1}^{N}\left\|f\left(\underline{x}^{(n)} \odot \underline{m}\right)-\underline{x}^{(n)}\right\|^{2}$
Monte Carlo

$$
\begin{aligned}
& \text { Carlo }\left\|f\left(\underline{x}^{(n)} \odot \underline{m}\right)-\underline{x}^{(n)}\right\|^{2} \\
& \approx \|
\end{aligned}
$$

For random $n$ and $m \sim p(M)$

Principal Components Analysis (PCA)
It fits a linear autoencoder:

$$
\begin{aligned}
& g^{(1)}(z)=z \\
& g^{(2)}(z)=z
\end{aligned}
$$

PCA advantages:

- Fit with linear algebra operations
- Sarre answer every tire
- The solutions for different $k$ are rested $h_{1}(\underline{x})$ is the same no matter $k$ to be. $h_{2}(\underline{x})$ " "" for all $k \geqslant 2$
$P C A$
High-dim, ball of points Here $D=3$

$v^{(k)} k^{\text {th }}$ eigenvector of $\operatorname{cov}[x]$

Reduce dim vector:


$$
\underset{\Delta \times 1}{x} \rightarrow \underset{k \times 1}{V^{T}(\underline{x}-\mu)}
$$

Reconstruct into 3 diriensiois:


Should have mentioned data centering. Next time!

## PCA: Principal Component Analysis


$\mathrm{K}=1$
$+=\mathrm{X}$

- = Xproj
$-=\mathrm{V}(:, 1)$

Code assuming X is zero-mean
\% Find top K principal directions:
[V, E] = eig(X'*X);
[E,id] = sort(diag(E),1,'descend');
V = V(:, id(1:K)); \% DxK
\% Project to K-dims:
X_kdim = X*V; \% NxK
\% Project back:
X_proj = X_kdim * V'; \% NxD

## PCA applied to bodies



Freifeld and Black, ECCV 2012

## PCA applied to DNA

Novembre et al. (2008) — doi:10.1038/nature07331
Carefully selected both individuals and features

1,387 individuals
197,146 single nucleotide polymorphisms (SNPs)

Each person reduced to two(!) numbers with PCA


MSc course enrollment data
Binary $S \times C$ matrix $M$
$M_{s c}=1$, if student $s$ taking course $c$
Each course is a length $S$ vector

OR each student is a length $C$ vector

## PCA applied to MSc courses



## PCA applied to MSc students



