Linear regression

$$y = w_1 x + w_2$$
, $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}; 0, 0.4^2 I)$

Linear regression

$$y^{(n)} = w_1 x^{(n)} + w_2 + \epsilon^{(n)}$$
, $\epsilon^{(n)} \sim \mathcal{N}(0, 0.1^2)$

Linear regression (zoomed in)

Model mismatch

What will Bayesian linear regression do?

Quiz

Given a (wrong) linear assumption, which explanations are typical of the posterior distribution?

D All of the above

E None of the above

Z Not sure

'Underfitting'

Posterior very certain despite blatant misfit. Peaked around least bad option.