
Bayesian regression
We now revisit regression, fitting real-valued outputs, with a more elaborate statistical
approach than before. Previously, we fitted a scalar function, which represented a best guess
of an output at a location. Now we will represent a whole probability distribution over
possible outputs for each input location. Given this probabilistic model, we can use “Bayesian”
reasoning (probability theory) to make predictions. We won’t need to cross-validate as many
choices, and we will be able to specify how uncertain we are about the model’s parameters
and its predictions. (We won’t achieve these advantages in this note, but that’s where we’re
going.)

A probabilistic model for regression

When we created classifiers, it was useful to model the probability distribution over possible
labels at each position in input space P(y | x). We can also write down a probabilistic model
for regression models. The simplest starting point is a Gaussian model:

p(y | x, w) = N (y; f (x; w), σ2),

where f (x; w) is any function specified by parameters w. For example, the function f could
be specified by a linear model, a linear model with basis functions, or a neural network. We
have explicitly written down that we believe the differences between observed outputs and
underlying function values should be Gaussian distributed with variance σ2.

The starting point for estimating most probabilistic models is “maximum likelihood”, finding
the parameters that make the data most probable under the model. Numerically, we minimize
the negative log likelihood:

− log p(y |X, w) = −∑
n

log p(y(n) | x(n), w)

=
1

2σ2

N

∑
n=1

[
(y(n) − f (x(n); w))2

]
+

N
2

log(2πσ2).

If we assume the noise level is constant, we fit the parameters w simply by minimizing
square error, exactly as we have done earlier in the course.

By following this probabilistic interpretation, we are making more explicit assumptions than
necessary to justify least squares1. However, adopting a probabilistic framework can make it
easier to explore and reason about different models. If our measuring instrument reported
different noise levels for different observed y(n) values, we could immediately modify the
likelihood and obtain a sensible new cost function. Similarly, we could build a more robust
model (as we did for classification) by writing down a noise model with heavier tails to
better model outliers. Again, we would immediately obtain a new cost function.

For now we will stay with a simple linear regression model, with known constant noise
variance, and look at how to reason about its unknown weight parameters.

Representing uncertainty with distributions
[If this section doesn’t make sense, just keep reading. It’s just meant as motivation, and the next
section is more concrete. Most people need to see a few restatements of Bayesian learning before it
makes sense.]

As a physics undergraduate I plotted experimental results, with error bars, in a paper lab
book. We were instructed to find a line of best fit by eye, and draw it using a pencil and
ruler. We’d also draw the steepest and shallowest straight lines that were still reasonably
good fits to the data, to get a sense for how uncertain the original fit was. Given ±σ error

1. e.g., https://en.wikipedia.org/wiki/Gauss%E2%80%93Markov_theorem
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bars on our observed y values, we wanted each fitted line to go through about 2/3 of the
error bars. But there are many ways to draw such a line: with limited noisy observations, we
can’t know where an underlying function is.

What I’ve done in the figure below is slightly different. Rather than just showing extreme
lines, I’ve drawn a selection of twelve lines, each of which could plausibly have generated
the data. If I hid the line that I actually used to generate the data in this collection, you
would have trouble identifying it with certainty.
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One of the lines does look somewhat less plausible than the others. But it could be close to
the true line: maybe the left-most point had a large amount of noise added to it, and the line
is less steep than you might think.

If we observe a lot more points, we can be more certain where the underlying line is. The
range of plausible lines we might draw should become more limited, perhaps like this:
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I’ve drawn the lines almost on top of each other, so they appear as one thick line. I am fairly
certain that the true function is there.

If we wanted an intelligent agent to draw these plausible lines of fit for us, how should it do
it? Or more generally, how can we systematically express the uncertainty that we should
have in conclusions based on limited and noisy data?

One formal approach to handling uncertainty is to use probability distributions to represent
our beliefs, and probability theory to update them.2

In the context of line fitting, beliefs are represented by a probability distribution over the
parameters. That distribution should have low variance when we are certain, concentrating
its probability mass on a small region of parameter space. Given only a few datapoints, our
distribution over plausible parameters should be much broader.

In the figures above, I drew samples from probability distributions over parameters, and
plotted the resulting functions. The lines show just twelve of the many reasonable expla-
nations of the data as represented by a distribution over the model parameters. I got the
distributions from Bayes’ rule as described in the next section.

2. For keen students: a justification of this view is outlined in “Probability, frequency and reasonable expectation”,
R. T. Cox, American Journal of Physics, 14(1):1–13, 1946. It’s a readable paper.
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Bayes’ rule for beliefs about parameters

To apply probability theory to obtain beliefs we need both a probabilistic model, and prior
beliefs about that model.

Our example model for a straight line fit is:

f (x; w) = w1x + w2, p(y | x, w) = N (y; f (x; w), σ2).

If we knew the parameters w, we could compute the function for any x and simulate what
typical observations at that location would look like. However, when learning from data, we
don’t know the parameters w.

The prior

Our prior beliefs are represented by a distribution over the parameters, specifying which
models we think are plausible before observing any data. For example, if we set:

p(w) = N (w; 0, 0.42I),

we think the following functions are all reasonable models we could consider:
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Each of the lines above is a function f (x; w) where I have sampled the parameters w from
the prior distribution. They are quite bunched up around the origin. If I wanted to consider
larger intercepts at x=0 I could pick a broader prior on the bias parameter w2.

The posterior

The posterior distribution gives the beliefs about the model parameters that we should have
after observing data D = {x(n), y(n)}. These beliefs are represented by the distribution
p(w | D), pronounced “p of w given D”, and are obtained by Bayes’ rule.

p(w | D) = p(D |w) p(w)

p(D) ∝ p(D |w) p(w).

Bayes’ rule reweights or updates the prior distribution, so that parameters that are more
compatible with the data become more probable.

Applying Bayes rule to our toy regression problem (skipping the maths of how to do it for
the moment) gives beliefs centred around models that fit the observed data-points. Sampling
from that distribution gives the plot below:
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The light gray lines show the sample from the prior distribution that we had before. The
small black bars show data points (with error bars). The magenta lines show 12 samples
from the posterior distribution. As is usually the case (if our data is useful), the posterior
distribution concentrates in a much smaller region of parameter space than the prior. The
corresponding straight-line functions are also less spread out. Under the posterior, we only
believe that lines passing close to the data are plausible.

Zooming in to the same diagram, we can get a better view of the data and the possible
models sampled from the posterior distribution:
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The plausible lines sampled from the posterior distribution naturally spread out as we move
away from the observed data. The statistical machinery automatically tells us that we are
less certain about where the function is as we move away from where we have measured it.

Computing the Posterior

For general models, the posterior distribution won’t have a convenient and small-to-represent
form. The likelihood is a product of N terms for N datapoints, and that product could
potentially create a complicated function.

A conjugate prior is one where the product of the prior and likelihood combines to give
a distribution with the same functional form as the prior. A Gaussian prior over linear
regression weights is conjugate to its linear-Gaussian likelihood, and we obtain a Gaussian
posterior:

p(w | D) ∝ p(w) p(D |w),

∝ N (w; 0, σ2
prior) ∏

n
N (y(n); w>φ(x(n)), σ2),

∝ N (w; 0, σ2
prior)N (y; Φw, σ2I),

where φ(x) = [x 1]> is an augmented input vector, and Φ is a matrix containing these
augmented vectors in each row. The posterior is proportional to the exponential of a quadratic
in w, which means it is a Gaussian distribution. As in a tutorial exercise, we can identify the
mean and covariance from the linear and quadratic coefficients of w. It’s just linear algebra
grunt work.
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Recommended reading
Murphy Chapter 7 introduces linear regression with a probabilistic perspective from the
beginning. Bayesian linear regression is in Section 7.6. There is a demo in Figure 7.11 that
comes with code.

Possible exercise
For those looking for things to do and implement, here is a possible work-up exercise: You
could work through and implement a simpler inference problem. For example, assume a
Gaussian prior over a single number m. Pick a value for m and generate datapoints from
N (m, 1). What should your posterior be given these observations? You could run a series of
trials where you draw a value for m from the prior, simulate data and compute a posterior.
How often is the true value of m within ± one standard deviation of your posterior mean?

Further detail
Definitely non-examinable: I first learned Bayesian methods from David MacKay. Chapter 3
of his book, describes the undergraduate physics question where he first learned about
Bayes’ rule for inferring an unknown parameter. Depending on your background, you may
find that story interesting.

Historical note: Using probabilities to describe beliefs has been somewhat controversial over
time. There’s no controversy in Bayes’ rule: it’s a rule of probability theory, a direct conse-
quence of the product rule. It’s using Bayes’ rule to obtain beliefs, rather than frequencies,
that has been controversial.
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