
Univariate Gaussians
The Gaussian distribution, also called the normal distribution, is widely used in probabilistic
machine learning. This week we’ll see that you should know about Gaussians when doing
some basic statistics on your experimental results. Later in the course we’ll use Gaussians as
building blocks of probabilistic models, and to represent beliefs about unknown quantities
in inference algorithms.

As large parts of the MLPR course depend on thoroughly understanding Gaussians, I
have written quite detailed (slow) notes compared to the machine learning text books, and
provided exercises. A later note on multivariate Gaussians will also be important. Many of
you will have seen all of this material before (some of you several times), so I won’t step
through it all in lectures. However, I am happy to answer questions on the class forum.

The standard normal distribution, the zero-mean unit-variance Gaussian
I think of a probability distribution as an object, like a black box, that outputs numbers.
A number-producing box for the standard normal distribution has a label, N (0, 1), and a
button. If we press the button, the box displays a number. You can simulate this process
at a Matlab/Octave prompt by typing randn(). You can also use randn() in Python after
typing: from numpy.random import randn. If you ‘press the button’ multiple times, or run
randn() multiple times, you’ll get different numbers. To attach a label to an outcome from
the generator we write in mathematics x ∼ N (0, 1), or in code x = randn().

Each call to randn() gives a different number, and many calls reveal the distribution encoded
in the generator, described by the label N (0, 1). A histogram of a million draws from the
distribution, reveals a classic ‘bell-curve’ shape. You should be able to sketch this bell-shaped
curve, with points of inflection at ±1. Try plotting a histogram of a million standard normal
samples on a computer now. If you know how to do it, opening a terminal and creating the
plot can be done in about 10 seconds. If you don’t know how to do it, learning to sample
test data and to create plots is an important skill to develop. Example code is at the end of
this document.

The observed or empirical mean of the samples will be about 0, and the empirical variance
will be about 1. (Check this on your samples!) In the limit of infinitely many samples
these values become exact, hence the numbers in the label N (0, 1). Formally: µ = E[x] =∫

x p(x) dx = 0 and var[x] = E[(x− µ)2] =
∫

x2 p(x) dx = 1. There is a separate sheet on
working with expectations if you need more review of probability.

The ‘probability density function’ (PDF) for the standard normal distribution describes the
bell-shaped curve:

p(x) = N (x; 0, 1) =
1√
2π

e−
1
2 x2

.

The probability of landing in a narrow range of width δ between x−δ/2 and x+δ/2 is about
p(x)δ. This statement becomes accurate in the limit δ → 0. So with N = 106 samples, we
expect about p(x)Nδ samples to land in a narrow histogram bin of width δ at position x.
Using this approximation, you should be able to plot a theoretical prediction through the
histogram you produced earlier.

Shifting and scaling: general univariate Gaussians
[The separate notes on expectations contain more material on shifting and scaling random
variables.]

We can define a process to generate a quantity y that draws a value from a standard normal,
x ∼ N (0, 1), and then adds a constant y = x + µ. The mean of this distribution, is µ.

MLPR:w2b Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 1

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

If we drew many values from N (0, 1), and added some constant µ to each one, the histogram
of the values keeps the same shape and simply shifts to be centred at µ. The PDF will shift
in the same way. This distribution has the same shape, just with a different location, and
so is still called a Gaussian, just with mean µ instead of mean 0. To get the PDF of the new
variable, we replace every occurrence of x with (y− µ):

p(y) = N (y; µ, 1) =
1√
2π

e−
1
2 (y−µ)2

.

The choice of variable names, such as x or y, is arbitrary in this note. You will of course also
see x used for Gaussians with non-zero mean.

Similarly, we can define a random variable z that multiplies or ‘scales’ a standard normal
outcome by a constant σ, before adding a constant µ:

z = σx + µ.

If we scale and shift many draws from a standard normal, the histogram of values will be
stretched horizontally, and then shifted. Scaling by σ multiplies the variance by σ2 (see the
notes on expectations), and leaves the mean at zero. Adding µ doesn’t change the width of
the distribution, or its variance, but adds µ to the mean.

The distribution of z maintains the same bell-curve shape, with the points of inflection now
at ±σ (note, not ±σ2). We still say the variable is Gaussian distributed, but with different
parameters: z ∼ N (µ, σ2). By convention, the second parameter of the normal distribution is
usually its variance σ2, not its width or standard deviation σ. However, if you are reading a
paper, or using a new library routine, it is worth checking the parameterization being used,
just in case. Sometimes people choose to define a Gaussian by its precision, 1/σ2, instead of
the variance.

For a general univariate Gaussian variable z ∼ N (µ, σ2), we can identify a standard normal,
by undoing the shift and scale above:

x =
z− µ

σ
.

Substituting this expression into the PDF for the standard normal, suggests

p(z) = N (z; µ, σ2) ∝ e−
1

2σ2 (z−µ)2
.

However, we have to be careful transforming random variables. Here, stretching out the
bell-curve to be σ times wider would make the area underneath it σ times bigger. However,
PDFs must be normalized: the area under the curve must be one. To conserve probability
mass, if we stretch a region of outcomes, we must also decrease the PDF there by the same
factor. Hence, the PDF of a general (univariate) Gaussian is that for a standard normal,
scaled down by a factor of σ:

p(z) = N (z; µ, σ2) =
1

σ
√

2π
e−

1
2σ2 (z−µ)2

,

which can also be written by replacing the σ in the denominator with σ2 inside the square-
root.

Check your understanding further
• What’s the difference between N (0, 1) and N (x; 0, 1)?

• What is the integral Z =
∫

e−
1

2σ2 (u−µ)2
du ? By considering

∫
N (u; µ, σ2) du, you

should be able to write down the answer without doing any detailed calculations.

• What is the integral C =
∫

∑K
k=1 wkN (x; µk, σ2

k) dx, for a general set of weights wk?
Again, no detailed calculations should be required.

MLPR:w2b Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 2

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

Further reading
https://en.wikipedia.org/wiki/Normal_distribution

Matlab/Octave code
To generate a million outcomes from a standard normal and plot a histogram:

N = 1e6;
xx = randn(N,1);
hist(xx, 100); % 100 bars shows shape better than default of 10

To check the mean and variance:
empirical_mean = mean(xx)
empirical_var = var(xx)

You should understand how to plot a theoretical prediction of this histogram shape. Fill in
the parts marked TODO below:

[cc, bin_centres] = hist(xx, 100);
% Fill in an expression to evaluate the PDF at the bin_centres.
% To square every element of an array, use .^2
pdf = TODO;
bin_width = bin_centres(2) - bin_centres(1);
predicted_bin_heights = TODO; % pdf needs scaling correctly
% Finally, plot the theoretical prediction over the histogram:
hold on;
plot(bin_centres, predicted_bin_heights, '-r');
hold off;

Python code
To generate a million outcomes from a standard normal and plot a histogram:

import numpy as np
from matplotlib import pyplot as plt

N = int(1e6) # 1e6 is a float, numpy wants int arguments
xx = np.random.randn(N)
hist_stuff = plt.hist(xx, bins=100)
plt.show()

To check the mean and variance:
print('empirical_mean = %g' % np.mean(xx)) # or xx.mean()
print('empirical_var = %g' % np.var(xx)) # or xx.var()

You should understand how to plot a theoretical prediction of this histogram shape. Fill in
the parts marked TODO below:

bin_centres = 0.5*(hist_stuff[1][1:] + hist_stuff[1][:-1])
Fill in an expression to evaluate the PDF at the bin_centres.
To square every element of an array, use **2
pdf = TODO
bin_width = bin_centres[1] - bin_centres[0]
predicted_bin_heights = TODO # pdf needs scaling correctly
Finally, plot the theoretical prediction over the histogram:
plt.hold('on')
plt.plot(bin_centres, predicted_bin_heights, '-r')
plt.hold('off')
plot.show()

MLPR:w2b Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 3

https://en.wikipedia.org/wiki/Normal_distribution
http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

	 Univariate Gaussians
	 The standard normal distribution, the zero-mean unit-variance Gaussian
	 Shifting and scaling: general univariate Gaussians
	 Check your understanding further
	 Further reading
	 Matlab/Octave code
	 Python code

