
Linear regression
Much of machine learning is about fitting functions to data. That may not sound like an
exciting activity that will give us artificial intelligence. However, representing and fitting
functions is a core building block of most working machine learning or AI systems. We
start with linear functions, both because this idea turns out to be surprisingly powerful, and
because it’s a useful starting point for more interesting models and methods.

A general linear function of a vector x takes a weighted sum of each input and adds a
constant. For example, for D=3 inputs x = [x1 x2 x3]

>, a general (scalar) linear function is:

f (x; w, b) = w1x1 + w2x2 + w3x3 + b = w>x + b,

where w is a D-dimensional vector of “weights”. The constant offset or “bias weight” b gives
the value of the function at x = 0 (the origin).

We will fit the function to a training set of N input-output pairs {x(n), y(n)}N
n=1. Expressing

the data and function values using linear algebra, makes the maths easier in the long run,
and makes it easier to write fast array-based code.

We stack all of the observed outputs into a column vector y, and the inputs into an N×D
“design matrix” X:

y =


y(1)

y(2)
...

y(N)

 , X =


x(1)>

x(2)>
...

x(N)>

 =


x(1)1 x(1)2 · · · x(1)D
x(2)1 x(2)2 · · · x(2)D

...
...

. . .
...

x(N)
1 x(N)

2 · · · x(N)
D

 .

Elements of these arrays are yn = y(n), and Xn,d = x(n)d . Each row of the design matrix gives
the features for one training input vector. We can simultaneously evaluate the linear function
at every training input with one matrix-vector multiplication:

f = Xw + b,

where fn = f (x(n); w, b) = w>x(n) + b.

We can compute the total square error of the function values above, compared to the observed
training set values:

E(w, b) =
N

∑
n=1

[
y(n) − f (x(n); w, b)

]2

= (y− f)>(y− f).

The least-squares fitting problem is finding the parameters that minimize this error.

Fitting weights with b = 0

To keep the maths simpler, we will temporarily assume that we know our function goes
through the origin. That is, we’ll assume b = 0. Thus we are fitting the relationship:

y ≈ f = Xw.

Fitting w to this approximate relationship by least-squares is so common that Matlab/Octave
makes fitting the parameters astonishingly easy:

% sizes: w_fit is Dx1 if X is NxD and yy is Nx1
w_fit = X \ yy;

With NumPy, fitting the weights is still one line of code:
shapes: w_fit is (D,) if X is (N,D) and yy is (N,)
w_fit = np.linalg.lstsq(X, yy)[0]

MLPR:w1b Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 1

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

Fitting more general functions

We’ll return to how least squares fitting routines (\ or lstsq) work later. For now, we’ll
assume they’re available, and see what we can do with them.

In machine learning it’s often the case that the same code can solve different tasks simply by
using it on different representations of our data. In the rest of this note and the next, we will
solve different tasks all with the same linear least-squares primitive operation.

We assumed that our function passed through the origin. We can remove that assumption
simply by creating a new version of our design matrix. We add an extra column containing
a one in every row:

X′ =


1 x(1)>

1 x(2)>
...

...
1 x(N)>

 =


1 x(1)1 x(1)2 · · · x(1)D
1 x(2)1 x(2)2 · · · x(2)D
...

...
...

. . .
...

1 x(N)
1 x(N)

2 · · · x(N)
D

 .

In Matlab/Octave:
X_bias = [ones(size(X,1),1) X]; % Nx(D+1)

In Python
X_bias = np.hstack([np.ones((X.shape[0],1)), X]) # (N,D+1)

Then we fit least squares weights exactly as before, just using X′ or X_bias, instead of
the original design matrix X. If our input was D-dimensional before, we will now fit D+1
weights, w′. The first of these is always multiplied by one, and so is actually the bias weight b,
while the remaining weights give the regression weights for our original design matrix:

X′w′ = Xw′2:D+1 + w′1 = Xw + b.

Polynomials

We can go further, replacing the design matrix with a new matrix Φ. Each row of this matrix
is an arbitrary vector-valued function of the original input: Φn,: = φ(x(n))>. If the function
is non-linear, then our function f (x)=w>φ(x) will be non-linear in x. However, we can still
use linear-regression code to fit the model, as the model is still linear in the parameters.

The introductory example you’ll see in most textbooks is fitting a polynomial curve to one-
dimensional data. Each column of the new design matrix Φ is a monomial of the original
feature:

Φ =


1 x(1) (x(1))

2 · · · (x(1))
K−1

1 x(2) (x(2))
2 · · · (x(2))

K−1

...
...

...
. . .

...

1 x(N) (x(N))
2 · · · (x(N))

K−1

 .

Using Φ as our design or data matrix we can then fit the model

y ≈ f = w>φ(x) = w1 + w2x + w3x2 + · · ·+ wKxK−1,

which is a general polynomial of degree K−1.

We could generalize the transformation for multivariate inputs,

φ(x) = [1 x1 x2 x3 x1x2 x1x3 x2x3 x2
1 . . .]>,

and hence fit a multivariate polynomial function of our original features.

Polynomials are usually taught in introductions to regression first, because the idea of fitting
a polynomial curve may already be familiar. However, polynomial fits are not actually used
very often in machine learning. They’re probably avoided for two reasons. 1) The feature
space quickly explodes if your original features are high-dimensional; 2) Polynomials rapidly
take on extreme values as the input x moves away from the origin.

MLPR:w1b Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 2

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

Basis functions

Instead of creating monomial features, we can transform our data with any other vector-
valued function:

φ(x) = [φ1(x) φ2(x) . . . φK(x)]>.

By convention, each φk is called a basis function. The function we fit is a linear combination
of these basis functions:

f (x) = w>φ(x) = ∑
k

wkφk(x).

We don’t have to include a constant or bias term in the mathematics, because we can always
set one of the φk functions to a constant.

One possible choice for a basis function φk is a Radial Basis Function (RBF):

exp(−(x− c)>(x− c)/h2),

where different basis functions can have different parameters c and h. The function is
proportional to a Gaussian probability density function (although is not a probability density
in this context). The function has a bell-curve shape centred at c, with ‘bandwidth’ h. The
bell-curve shape is radially symmetric: the function value only depends on the radial distance
from the centre c.

Another possible choice is a logistic-sigmoid function:

σ(v>x + b) =
1

1 + exp(−v>x− b)
.

This sigmoidal or “s-shaped” curve saturates at zero and one for extreme values of x. The
parameters v and b determine the steepness and position of the curve.

Using just linear regression, one line of fitting code, we can fit flexible regression models
with many parameters. The trick is to construct a large design matrix, where each column
corresponds to a basis function evaluated on each of the original inputs. Each basis function
should have a different position and/or shape. Models built with radial-basis functions and
sigmoidal functions extrapolate more conservatively than polynomials for extreme inputs.
Radial-basis functions tend to zero, and sigmoidal functions tend to a constant. Neither of
these families of basis functions has fundamental status however, and other basis functions
are also used.

Checking your understanding
A question to check your mathematical understanding:

• An RBF basis function is centred at some position c. We can create multiple columns
of Φ by evaluating RBFs with different centres. Why does it not make sense to create
a family of quadratic functions φk(x) = (x− ck)

2, and include several features with
different centres ck?

You should also understand how the maths would translate to code, and actually doing
regression. I give here a quick review of how to plot functions in Matlab/Octave or Python,
and demonstrate how to plot different basis functions, and linear regression fits.

One dimensional basis functions

We can plot one-dimensional functions by evaluating them on a fine grid. For example, the
cosine function:

In Matlab/Octave:

MLPR:w1b Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 3

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

grid_size = 0.1;
x_grid = -10:grid_size:10;
f_vals = cos(x_grid);
clf; hold on;
plot(x_grid, f_vals, 'b-');
plot(x_grid, f_vals, 'r.');

In Python:
import numpy as np
import matplotlib.pyplot as plt

grid_size = 0.1
x_grid = np.arange(-10, 10, grid_size)
f_vals = np.cos(x_grid)
plt.clf(); plt.hold('on')
plt.plot(x_grid, f_vals, 'b-')
plt.plot(x_grid, f_vals, 'r.')
plt.show()

We’re not really evaluating the whole function. We just evaluated it at the points shown by
red dots. However, the blue curve joining these dots closely approximates our function. If
we decrease the grid_size further, the blue line will become as accurate as it’s possible to
plot on a computer screen.

We could use the cosine function as a basis function in our model. We can also create and
plot other basis functions.

Matlab/Octave:
% Matlab/Octave functions usually need to be defined in a file.
% To make a simple RBF function, create a file rbf_1d.m containing:
%function vals = rbf_1d(xx, cc, hh)
%vals = exp(-(xx-cc).^2 / hh.^2);
%
% But one-line functions can be created anywhere like this:
rbf_1d = @(xx, cc, hh) exp(-(xx-cc).^2 / hh.^2);

clf(); hold on;
grid_size = 0.01;
x_grid = -10:grid_size:10;
plot(x_grid, rbf_1d(x_grid, 5, 1), '-b');
plot(x_grid, rbf_1d(x_grid, -2, 2), '-r');

Python:
Unlike Matlab, function definitions can be made anywhere
in Python. They don't have to go in a file.
def rbf_1d(xx, cc, hh):

return np.exp(-(xx-cc)**2 / hh**2)
An alternative that can be used for one line functions:
rbf_1d = lambda xx, cc, hh: np.exp(-(xx-cc)**2 / hh**2)

plt.clf(); plt.hold('on')
grid_size = 0.01
x_grid = np.arange(-10, 10, grid_size)
plt.plot(x_grid, rbf_1d(x_grid, cc=5, hh=1), '-b')
plt.plot(x_grid, rbf_1d(x_grid, cc=-2, hh=2), '-r')
plt.show() # I may forget sometimes. Not necessary in python --pylab

MLPR:w1b Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 4

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

The code above plots a radial basis function centred at x=5 in blue, and one in red that’s
twice as wide and centred at x=−2.

Exercise: You should plot logistic-sigmoid functions σ(vx+b) = 1/(1 + e−vx−b) in one-
dimension for different v and b. What is the effect of the parameters v and b?

Combinations of basis functions

You might think of the function f (x) = ∑k wkφk(x) as being made up of separate parts φk.
For example, plot the function

f (x) = 2φ1(x)− φ2(x),

where φ1 and φ2 are unit bandwidth RBFs centred at −5 and +5. You can identify two
separate bumps, each a scaled version of a basis function.

However, it’s frequently not obvious by eye what the underlying basis functions are. For
example, we can create a function with monomial basis functions

φ1(x) = 1
φ2(x) = x

φ3(x) = x2,

and weights w = [5 10 −1]>. The resulting function has a simple form,

f (x) = w>φ(x) = 5 + 10x− x2 = 30− (x−5)2,

which, unlike any of the basis functions, peaks at x = 5. Similarly, a function made by
combining several overlapping RBFs can have peaks in between the peaks of any of the
underlying basis functions.

Linear regression

Consider a dataset with 3 datapoints:

y =

 1.1
2.3
2.9

 , X =

 0.8
1.9
3.1

 .

By working through the following Matlab/Octave demo or otherwise, you should make
sure you know how to fit and plot a variety of linear regression models.

% Set up and plot the dataset
yy = [1.1 2.3 2.9]';
X = [0.8 1.9 3.1]';
clf(); hold all;
plot(X, yy, 'x', 'MarkerSize', 20, 'LineWidth', 2);

% phi-functions to create various matrices of new features
% from an original matrix of 1D inputs.
phi_linear = @(Xin) [ones(size(Xin,1),1) Xin];
phi_quadratic = @(Xorig) [ones(size(Xorig,1),1) Xorig Xorig.^2];
fw_rbf = @(xx, cc) exp(-(xx-cc).^2 / 2);
phi_rbf = @(Xin) [fw_rbf(Xin, 1) fw_rbf(Xin, 2) fw_rbf(Xin, 3)];

fit_and_plot(phi_linear, X, yy); % Helper routine (see below)
fit_and_plot(phi_quadratic, X, yy);
fit_and_plot(phi_rbf, X, yy);
legend({'data', 'linear fit', 'quadratic fit', 'rbf fit'});

MLPR:w1b Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 5

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

Using the following helper routine saved as fit_and_plot.m:
function fit_and_plot(phi_fn, X, yy)
% phi_fn takes Nx1 inputs and returns NxD basis function values
w_fit = phi_fn(X) \ yy; % Dx1
X_grid = (0:0.01:4)'; % Nx1
f_grid = phi_fn(X_grid)*w_fit;
plot(X_grid, f_grid, 'LineWidth', 2);

Different regression models give different fitted functions. Any model with three indepen-
dent basis functions can fit the three training points exactly. However, the models’ predictions
in other locations will usually be different.

Aside on terminology and notation
[This section is non-examinable. It’s intended to help you read other resources.]

Textbooks and code documentation use various different names and notations for the things
covered in this note. While learning a subject these differences can be confusing, but dealing
with different notations is a necessary research skill.

The “weights” w are the parameters of the model, or “regression coefficients”. In statistics
textbooks and papers they are often given the symbol β. The constant offset or intercept b,
when included, could have various symbols, including β0, w0, or c. In the neural network
literature this parameter is called the “bias weight” or simply the “bias”. There’s an unfortu-
nate clash in terminology: a “bias weight” does not set the statistical “bias” of the model (its
expected test error, averaged over different training sets).

These notes try where possible to use lower-case letters for indexing, with the corresponding
capital letter for a number of settings. For example training data-points usually use the index
n running from n = 1...N, feature dimensions use d = 1...D, and components of a model
might be k = 1...K. As a result, the notation won’t match some textbooks. In statistics it’s
common to index data-items with i = 1...n, and parameters with j = 1...p.

While most textbooks use subscripts for both features and items, these notes usually identify
the nth vector of a dataset with a bracketed super-script x(n). Those superscripts occasionally
get in the way, but make a clear distinction from feature dimensions, which are always
subscripts. The dth feature of the nth datapoint is thus x(n)d . When we cover Gaussian
processes later in the course, this notational baggage may help avoid confusion.

In statistics it’s standard for the design matrix X to be an N×D matrix, containing datapoints
as row vectors. However machine learning code occasionally expects your data in a D×N
array. It is worth double-checking that your matrices are the correct way around when calling
library routines, and leave comments in your own code to document the intended sizes of
arrays. Sometimes I leave a comment at the end of a line that simply gives the size of the
result: for example, “% NxD” in Matlab, or “# (N,D)” in Python.

MLPR:w1b Iain Murray, http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/ 6

http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/

	 Linear regression
	 Fitting weights with b=0
	 Fitting more general functions
	 Polynomials
	 Basis functions

	 Checking your understanding
	 One dimensional basis functions
	 Combinations of basis functions
	 Linear regression

	 Aside on terminology and notation

