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Abstract

This coursework presents a second approach to
the tumor tissue image classification task. We
implemented an Inception-V3 deep neural net-
work that detects and classifies breast tumor
cells over tissue slide images. Due to the dif-
ficulty of the problem, we further explored and
compared several image pre-processing methods
over different image magnifications, hypothesiz-
ing that simple pre-processing may be beneficial
in this setting. These experiments allowed us to
measure the impact of normalization, standard-
ization, augmentation, segmentation and dataset
balancing of medical tissue slides on our model.
Despite the lack domain knowledge about the
pathology of this disease, our neural architecture
achieved 93.0% ± 0.5% accuracy for 40X mag-
nification image slides. We found that unlike
other methods which rely heavily on complex
feature engineering, convolutional neural net-
works with simple image pre-processing tech-
niques can achieve good results, comparable to
results obtained using significantly more com-
putationally intensive convolutional neural net-
work models.

1. Introduction
In the early 90’s, the field of computer vision moved from
using edge detectors, lines, and filters to supervised learn-
ing techniques. This shift allowed the subfield of medi-
cal image analysis to develop trainable systems that facili-
tate the processing and analysis of medical images. The
previous approach is characterized by training a system
with custom-made patterns. Despite the fact that super-
vised methods are still widely used today, recent advances
and results in deep neural networks research have led the
medical image analysis community to consider neural net-
works.

Lo et al. (1995) was the first to apply neural networks
to medical images. However, it was not until the late
1980s that LeCun et al. (1998) introduced LeNet to effi-
ciently recognize character images. In 2012 Krizhevsky
et al. (2012) implemented AlexNet, an increasingly com-
plex neural architecture that won the ImageNet challenge.
This background motivated us to explore deeper and more
robust architectures on a set of medical image data.

1.1. Research Questions

In the previous coursework we presented a first approx-
imation to the breast cancer image classification dataset
(BreakHis)1 compiled by Spanhol et al. (2016a). Briefly,
as covered in Coursework 3, the data is in the form of im-
ages from slides of breast tissue to be classified into ei-
ther Malignant or Benign samples. The 7915 images in
the dataset are of 40x, 100x, 200x or 400x magnification
and come from 81 patients. There are approximately 31
percent benign samples and 69 percent malignant samples.

(a) Benign tissue (b) Benign tissue

(c) Malignant tissue (d) Malignant tissue

Figure 1. Example images of both Benign and Malignant tissue,
image taken from (Spanhol et al., 2016a)

In coursework 3 we implemented and compared the per-
formance of three baseline models. More specifically, we
used classical machine learning methods like support vec-
tor machines (SVM), and two deep neural network ar-
chitectures, LeNet (LeCun et al., 1998) and GoogLeNet
(Szegedy et al., 2015). We discovered that the best-
performing baseline was GoogLeNet, which achieved 83%
validation accuracy on average. We found that classifying
tissue images for detecting benign or malignant presence
of cells is a challenging task.

In this coursework we present a second approximation for
the breast cancer image classification task. Based on the
results presented in Szegedy et al. (2016) and coursework
three, we proposed an Inception-V3 classification archi-
tecture for classifying malignant or benign tissue slides
hypothesizing that the deeper network architecture would
yield better results in this case. Following this, we inves-
tigated the effects of image pre-processing for this task,

1https://web.inf.ufpr.br/vri/databases/breast-cancer-
histopathological-database-breakhis/

https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
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hypothesizing that better performance could be obtained
by altering the images either in accordance to how human
researchers may view these images, such as patch by patch
at a time, or by changing other heuristics such as color.
Due to time constraints, our primary focus was on pre-
processing. Model selection was validated on the previous
coursework, hyper-parameters like learning rate and mo-
mentum were initialized with 0.01, and 0.9 respectively.
Hyper-parameter tuning could be easily done with more
time and would not be as interesting as exploring the ef-
fects of simple pre-processing techniques. It has also been
extensively done for other architectures in Courseworks 1
and 2.

The research questions for this coursework can be summa-
rized as:

• What is the performance of a state-of-the-art neural net-
work like Inception for this task in comparison to the
best performing baseline from Coursework 3?
• What is the effect of normalization and standardization

over our dataset?
• Can our model generalize well for different image mag-

nification levels?
• What is the effect of data augmentation in our classifi-

cation pipeline?
• Does applying segmentation techniques increase the

performance of our pipeline?
• Does balancing the classes in the dataset when training

the model improve the performance of the model?
• What is the overall effect of the data pre-processing

techniques outlined above on the performance of this
model and would there appear to be merit in further ex-
ploring data pre-processing?

Therefore the objectives are to investigate color standard-
ization, color normalization, dataset augmentation, image
segmentation and dataset balancing. The methodology it-
self is described in more detail in Section 3.

1.2. Dataset Preprocessing

We approached this problem as a supervised binary classi-
fication task. For the initial part of the experimental setup,
there was no pre-processing involved, apart from splitting
the images into Training, Validation, and Test Sets. The
below table shows the final configuration of our data, after
splitting it.

Table 1. Data configuration.

We created a script that loads the images as a scaled numpy
matrix, and given the directory or location (i.e., benign or
malignant) of the sample, it automatically labels each im-

age sample or row vector with 0 or 1. Additionally, the
dataset was split by patient ID, which ensures that the sam-
ples are mutually exclusive. In other words, no samples
from one patient are repeated across the training, testing,
and validation set. This is consistent with the literature.
The convolutional neural networks were run over the ma-
trix of pixel values. This setting allowed us to explore the
behavior of the models with raw data although the pixel
values were divided by 225 to move values to the range 0
to 1 and avoid issues with numerical overflow which could
otherwise arise, for example, in the non-linear activation
layer of a neural network. Also, based on the previous
coursework, we re-sized the images to 224x224.

2. Related Work and the Breast Tissue
Classification Task

Previous work on the classification task for this dataset
falls into two main categories; non-CNN approaches and
CNN-based approaches. Both use the same overall method
of splitting the data into training and test sets without hav-
ing individual patients belonging to both sets.

The dataset was introduced by Spanhol et al. (2016a) who
investigated combinations of 6 state-of-the-art texture
representation techniques including local binary patterns
(Guo et al., 2010) and parameter-free threshold adjacency
statistics together (PFTAS) with four types of classifiers;
one nearest neighbor, linear quadratic analysis, random
forests and Support Vector Machines. The models were
trained separately for each magnification level. The best
result obtained was by the one-nearest neighbor or Support
Vector machine classifiers using the PFTAS descriptor.
The error bars are relatively high, and the results vary
by magnification level. They identified particular issues
with one type of benign tumor, fibroadenoma, which
was similar in structure to a malignant tumor, leading
to relatively high false positive rates. Another negative
aspect of these traditional methods is that they heavily
rely on complex feature engineering techniques.

Building on this work, Spanhol et al. (2016b) proposed
the use of CNNs due to their state-of-the-art performance
on many image classification tasks. Obtaining approxi-
mately 90% classification accuracy on the test set for 40x
magnification, 88% for 100x, 85% for 200x and 86% for
400x by training a separate model for each magnification
level. They used random patch extraction and the AlexNet
architecture (Krizhevsky et al., 2012), improving on
the previous work by 4-6% by combining the results
of 4 CNNs using different segmentation methods with
the maximum rule. A disadvantage of this work is
the computational cost of the AlexNet architecture, as
discussed again in Section 3.1. The research of Spanhol
et al. (2016b) also mentions that histopathologic image
classification, in general, is a challenging task, mainly
because images present a high variance of rich and
complex geometrical structures.
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Spanhol et al. (2017) then investigated a method in be-
tween these two previous approaches which reused a pre-
viously trained CNN, CaffeNet, and extracted the output of
the final layers of this model as the feature vectors then fed
to a logistic regression classifier. The results were compa-
rable to those of Spanhol et al. (2016b), although did not
outperform them.

Finally, Bayramoglu et al. (2016) attempted to build a
CNN classifier independent of the magnification level as
they state that is would not always be practical to need im-
ages of a specific magnification. They point out the high
level of variability in the samples may be due to many fac-
tors such as different lab protocols, different staining proto-
cols and different levels of skill of the person preparing the
tissue sample. They also performed data augmentation via
some basic rotations of 90, 180 and 270 degrees, flipping
images and cropping them to 460x460. While their results
do not outperform those of Spanhol et al. (2016b), they
suggest the investigation of stain normalization, deeper ar-
chitectures and more training data going forward.

3. Methodology
Contrary to the previous coursework, all models and ex-
periments were implemented in a Python environment. We
used Keras (Chollet et al., 2015), a higher level interface
of TensorFlow (Abadi et al., 2016). We decided this time
to focus just on a Keras implementation because we found
it to have have faster prototyping and the purpose of this
coursework was to experiment with pre-processing and not
tuning the model in detail.

Additionally, we setup our own Google Cloud cluster with
52 GB RAM, 4CPU core, and 1 Nvidia K80 GPU board.
This allowed us to run several experiments in a short pe-
riod. This was particularly crucial as all tests were run 3x
or 5x each to obtain an estimate of the variability of the
result and the dataset was large.

3.1. Inception-V3 Architecture

For this coursework, we used a convolutional neural net-
work architecture named InceptionNet, an advanced ver-
sion of GoogLeNet. In a traditional convolutional layer,
a filter of a given size, say 5x5 is ‘scanned’ over the in-
put image. This filter has the same weight matrix at all
points in the image and therefore is essentially searching
for an individual learned feature, such as an edge, across
patches of the entire input image. There can be multiple
input channels, and multiple filters applied. The hidden
layer obtained from the input for a convolutional layer is
defined typically for a given feature as:

h = sigmoid(w
⊗

x + b)

where h is the hidden layer, w is the weight matrix, x
is the input, b is the bias term, and

⊗
indicates cross-

correlation.

The resulting matrix of values for that feature is then
pooled into a smaller representation using a pooling mech-
anism such as MaxPooling. Max-pooling simply takes the
maximum value of units in a region, for example taking
the maximum value of each 2x2 region in the hidden layer
to form a smaller hidden layer. These layers are com-
bined with fully connected layers using non-linear activa-
tion functions such as the Rectified Linear Unit (ReLU)
(Nair & Hinton, 2010) and an output Softmax Layer trans-
forming the output to a probability distribution. These lay-
ers then form a network which can then be trained using,
for example, stochastic gradient descent. The following
shows an example architecture of a ‘classic’ CNN:

Figure 2. Traditional CNN framework from (Albelwi & Mah-
mood, 2017).

InceptionNet aimes to reduce the high computational over-
head of convolutional layers used in the top performing
convolutional architectures by breaking relatively large
convolutions into a network of smaller convolutions, us-
ing their inception module framework:

Figure 3. Inception module, image taken from (Szegedy et al.,
2015).

These modules essentially factorize larger convolutions
into several smaller ones in a computationally efficient
manner with the goal of capturing the same degree of ex-
pressivity as a larger convolution. The 1x1 and 3x3 con-
volutions and max-pooling are performed first to reduce
the cost of the expensive 5x5 and 3x3 convolutions which
follow. This network of smaller convolutions has overall
fewer parameters.

These modules are then combined into a 22-layer architec-
ture as shown in Figure 3.

The use of these modules reduces the number of pa-
rameters from 60 million in the popular CNN architec-
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Figure 4. GoogLeNet framework from (Lazebnik, 2017). The blue nodes are convolutional layers, red are pooling layers, yellow are
softmax layers, and green are other such as concatenation layers

ture AlexNet (Krizhevsky et al., 2012) to 5 million in
GoogLeNet (Szegedy et al., 2015) while maintaining per-
formance. In this part of the report, the successor of
GoogLeNet, the Inception-V3 (Szegedy et al., 2016) ar-
chitecture is used.

The Inception-V3 architecture aims to scale up the rep-
resentative power of GoogleNet without losing the ad-
vantage of the reduced computational complexity in com-
parison to other deep convolutional architectures such as
AlexNet. It essentially adds the following features to
GoogLeNet to allow for increased model depth and rep-
resentative ability without an unfeasible increase in com-
putational cost:

1. Factorizing 7x7 convolutions, into structures similar to
the inception module using convolutions of size 3x3,
1x1, 7x1 and 1x7

2. Label Smoothing is used as a method of regulariz-
ing the classification layer by essentially adding uncer-
tainty by estimating the marginal effect of label dropout
on the resulting classification

3. The addition of Batch Normalization (Ioffe & Szegedy,
2015) to the auxiliary classifiers used in GoogLeNet
(the classifiers which are attached at the bottom of the
framework shown in Figure 3) to further improve their
performance as regularizers

The architecture also implements a transfer learning ap-
proach which initializes the network with weights pre-
trained using the ImageNet dataset (Deng et al., 2009).
This allows increased training speed. The culmina-
tion of these improvements is that Inception V3 outper-
forms GoogLeNet on the ImageNet task. It also exceeds
GoogLeNet on this task as discussed in Section 4 and thus
is used for the remainder of this report.

3.2. Normalization

The images in the dataset show signs of having different
levels of staining (Bayramoglu et al., 2016), potentially
due to different amounts of dye or other protocols being
used in different labs collecting the tissue. For this reason,
we decided to normalize our dataset for color variation.
Thus, we tried three different approaches:

1. Gray Scaling: The images were changed to greyscale
2. Contrast Normalization: Contrast Limited Adaptive

Histogram Equalization (CLAHE) (Zuiderveld, 1994)
enhances the local contrast of an image. This was im-
plemented as it has been shown to improve the perfor-
mance for other tasks involving images of breast tissue
(Pisano et al., 1998)

3. Channel Standardization: The pixel values over each
channel were standardized to 0 mean and unit variance
to have all inputs in a similar range of values

3.3. Augmentation

According to Wang & Perez (2017), data augmentation
can help to increase the performance of an estimator, the
authors compared the effect of several data augmentation
techniques like cropping, rotating, and flipping input im-
ages. Based on the previous research paper (Spanhol et al.,
2016b) we augmented the data by flipping left to right, flip-
ping top to bottom, and 90◦/80◦ rotation as well as by per-
forming light variation by adding 10% color distortion.

3.4. Segmentation

Segmentation was performed by splitting the images into
2x2, 3x3 or 10x10 patches. Havaei et al. (2017) present a
deep learning method that performs brain tumor segmen-
tation. One of the positive aspects of this approach is that
the system learns to identify relevant regions of interest
that are specific to detect brain tumors. Given the fact that
our images presented significant irrelevant sections (e.g.,
fat, healthy skin, and pigmentation areas), we decided to
run image segmentation to eliminate irrelevant image por-
tions over our image slides.

In the related work for this dataset, the simple approach of
extracting random patches of images was used. We also
decided to implement a simple method to assess if remov-
ing patches helped our model, intending to increase the
complexity of the approach if initial results were promis-
ing. The segmentation approach was motivated by the fact
that large parts of images contained regular tissue instead
of the cells which contained the relevant information for
cancer diagnosis for a human observer. These less rel-
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evant patches were thought to be characterized by being
of lighter color, without dark patches of cells. Therefore,
thresholding was first applied to the images, with all val-
ues above the threshold set to 1, therefore identifying the
light pixels. The pixels of each patch were then summed,
and the patch with the largest value kept for classification.
By manual analysis this appeared to work as expected, ex-
tracting a patch containing darker parts which resembled
areas of cells. An example is included in section 4.6.

3.5. Balancing

In the previous coursework, it was discovered that our
classes were unbalanced with around 70% malignant sam-
ples in the training dataset. Although this is to be expected
as biopsies are only taken of tumors which may be malig-
nant, we decided to investigate the impact of balancing our
dataset as it is unclear the exact effect this imbalance would
have on model performance. More specifically, since the
model is heavily biased towards malignant class, making
up 70% of the training data and as we do not know the pos-
terior probability of having malignant presence of cells, we
decided to balance our dataset by augmenting flipped left
to right images examples, this resulted in a 50/50 propor-
tion of benign and malignant examples.

4. Experiments and Results
In this section, we present the experiments and results
for our inception based image classifier. In the previous
coursework, we propose three different baselines. How-
ever, on average our best model was GoogleNet because it
showed 83% average validation accuracy. Inception-V3 is
used here as it is the latest version of GoogLeNet which
had been shown to outperform GoogLeNet on the Ima-
geNet tasks as described in Section 2. This model is run
first without any pre-processing to provide a direct com-
parison to GoogLeNet.

4.1. Experiment List

The following experiments were run, all using the
Inception-V3 architecture:

1. Inception-V3 (IV3)
2. IV3 + Greyscale + Channel Standardization
3. IV3 + Greyscale only
4. IV3 + Split Magnification
5. IV3 + Split magnification, greyscale and standardiza-

tion
6. IV3 + Split Magnification and greyscale
7. IV3 + Split Magnification and CLAHE contrast nor-

malization
8. IV3 + Split Magnification and augmentation except for

color distortion
9. IV3 + Split Magnification and all augmentation

10. IV3 + Split Magnification with 2x2 Patch Segmentation
11. IV3 + Split Magnification with 3x3 Patch Segmentation
12. IV3 + Split Magnification with 10x10 Patch Segmenta-

tion

13. IV3 + Split Magnification with Balanced Malignant
and Benign classes

4.2. Results

The following results were obtained for experiments 1-3,
each run 5 times. The below table shows the model’s max-
imum validation accuracy:

Table 2. Results table per image magnification.

It is notable that the Inception Architecture here outper-
formed the GoogLeNet architecture used in coursework
three which attained an average validation accuracy of
83.3% ± 0.5% over five runs. Therefore the Inception
framework is used going forward; potentially the deeper
architecture allowed slightly more complex relationships
to be captured by the model.

Another notable aspect is the following confusion matrix:
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Figure 5. Confusion matrix for experiment 1

As we can see in the above image, the false positive rate is
very high. The following results were run three times for
each experiment, and the results averaged. Interestingly,
we found that the model had better performance with im-
ages at 40X magnification than any other by a significant
margin.
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Table 3. Results table per image magnification.

The results are discussed in depth in the following sec-
tions.

4.3. Split Magnification

For this experiment we trained a model per each image
magnification, motivated by the fact that the validation ac-
curacy for the Inception model was converging very nois-
ily, as shown in the following plot:

Figure 6. Validation Accuracy for Overall Inception Model

We conjectured this might be due to the different magni-
fication images providing conflicting information and fea-
tures, we, therefore, split the images by magnification level
and trained a separate model on each. This improved the
convergence of the validation accuracy as shown in the fol-
lowing plot:

Figure 7. Validation Accuracy for 40x Magnification

The differences in performance indicate that each magnifi-
cation level is its own classification task with its difficulty
level and potentially its own features to be learned. This
intuitively makes sense as looking at the 40x image, a lot
more can be said about the overall structure of the tissue
but looking at 200x magnification more can be said about
cell shape. These features may have different levels of rel-
evance to the classification task at hand.

Additionally, the confusion matrices show an improve-
ment in the level of false positives when compared to the
overall model:
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Figure 8. Confusion matrix for experiment 4 at the 40x magnifi-
cation level

This was true for all magnification levels except for 400x
which had a worst case of 37% false positive rate for be-
nign samples.

4.4. Normalization and Standardization

Neither normalization nor standardization improved the
validation accuracy. This may be due to our assumption
that different levels of dye are due to differences in lab
practices. For example, it could, in fact, be due to some
unseen use of the different levels of color for example if
the surrounding cells of cancerous tissue absorb more dye
and the heightened color can thus be used as a useful fea-
ture. CLAHE normalization also did not improve the val-
idation accuracy. However, this experiment in particular
would ideally have been subject to further hyper-parameter
tuning, time permitting. This was not pursued due to the
time restrictions as the reported results were not particu-
larly promising.

4.5. Augmentation

Augmentation without color distortion attained the best
overall validation accuracy for 100x and 200x magnifica-
tion levels and only slightly decreased validation accuracy
for 40x and 400x. It is the best model on average over
all magnifications. It suggests that availability of more
training data would help the performance of these mod-
els as in this case rotated images are very similar to true
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images. Adding images with color distortion negatively
effected performance for the 100x and 200x magnification
levels, but had little effect for the 40x and 400x magnifica-
tion levels when the size of the standard deviation is taken
into account. This reinforces the conclusion from the color
normalization experiments that the color is potentially an
important feature.

4.6. Segmentation

The results of the segmentation experiment did not im-
prove the overall accuracies attained. However, we feel
that despite this the results were quite promising consid-
ering the naive method used. Although no magnification
improved, there was also not as much performance loss as
might have been expected. This suggests that further ex-
periments using more complex segmentation approaches
could yield promising results.

Figure 9. The segmentation approach for several magnifications.

The above image shows the output for our segmentation
approach. Interestingly, we can see that malignant cell
clusters are detected efficiently. Other, segmentation tech-
niques like structural or stochastic may require more time
to tune.

4.7. Balancing

Balancing classes achieved the highest validation accuracy
attained for the 40x magnification level. It also improved
the false positive rate for this magnification level.
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Figure 10. Confusion matrix for experiment 14 at the 40x magni-
fication level

However, class balancing did not show similar improve-
ments for the other magnification levels. The combination
of this result with those of the other differing experiments
again suggests that each magnification level is an entirely
different problem as the class split and therefore the class
imbalance is similar for each magnification level.

In fact, class balancing very negatively affected the false
positive rate of the 400x magnification level:
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Figure 11. Confusion matrix for experiment 14 at the 400x mag-
nification level

4.8. Results Comparison to Related Work

The best related work results were obtained by Spanhol
et al. (2016b) who had a similar result where different
CNNs, in their case CNNs with different segmentation
techniques, performed best on different magnification lev-
els. Their evaluation was performed on their validation set
as they did not have a separate test set, therefore the below
table compares our validation set performance for the best
model for each magnification level to theirs, however the
difference in the size of the split of 20% validation set in
this report versus 30% validation set in their report makes
the comparison challenging:

Figure 12. Validation Accuracies Comparison

Our best CNN for each magnification level has a higher
average validation accuracy, but also a significantly lower
standard deviation making it difficult to make a direct com-
parison.

4.9. Test Set Results

Finally, the best model for each magnification level was
chosen based on the results above. These models were then
evaluated using the held out test set to obtain an estimate
of their generalization ability. The accuracy for 40x was
87.07%, 100x was 90.00%, 200x was 94.57% and 400x
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was 64.84%. These results are relatively unexpected, par-
ticularly the inferior performance for the 400x magnifica-
tion level. We suspect that the test set and potentially also
the validation set sizes are too small given the complexity
of the training data.

The receiver operating characteristic curves (ROC) were
then plotted, illustrating the ability of our inception V3
network to classify images slides correctly. This helped to
contrast the actual positive rate against false positive rate.
Again, the 400X image magnification model was the worst
performing model in this respect.

Figure 13. ROC curves over the test sets.

Finally, the below image corresponds to the confusion ma-
trices of the model over the test set using the model with
best validation accuracy.
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Figure 14. Model evaluation over test sets evaluations.

The confusion matrices for the 40x, 100x and 200x mag-
nification levels are in line with what could be expected
given the confusion matrices for these magnification lev-
els on the validation set. The 400x model is predicting
most samples as malignant. This was not the case for the
validation data and is a puzzling result.

5. Conclusions
This coursework presented a second approximation to the
breast-cancer-image-classification dataset (BreakHis); we
found that separating per magnification improved classifi-
cation performances. Therefore, each magnification level
presents different problems as some magnification benefits
from particular pre-processing technique but not the other.
Another interesting insight was that balancing our data
played an important role in increasing the performance of
our system for one magnification level, while dataset aug-
mentation benefited other magnification levels. To sum-
marize, the main outcomes of this coursework were the
following:

• We experimented with a state-of-the-art deep neural ar-
chitecture.
• We successfully set up a Google Cloud environment

which let us run multiple complex models and several
experiments in a short amount of time.
• We successfully implemented an Inception V-3 pipeline.
• We experimented with the impact of normalization our

dataset, and we investigated the behavior a complex
model over different image sizes.
• We researched and tested image augmentation tech-

niques.
• We developed an image segmentation pipeline to detect

malignant tissue clusters.

As a future work, we would like to explore and compare
the performance of deeper models like densely connected
convolutional networks, which are networks that connect
each layer in a feed-forward approach. Huang et al. (2017)
state that these models have several advantages, for exam-
ple, these models can compensate the vanishing-gradient
problem, strengthen feature propagation, encourage fea-
ture reuse, and substantially reduce the number of param-
eters. Another interesting architecture that we would like
to try is VGG nets (Simonyan & Zisserman, 2014); these
networks are well known for its depth and their relatively
small 3x3 convolutional filters. VGG nets achieved good
performance at ImageNet’s classification and localization
tasks.

Another area that would ideally be further explored is
hyper-parameter optimization. For example, we would
like to investigate what is the optimum size of the win-
dow as well as further investigate some parameters of In-
ception, such as the learning rate. Improving performance
in this way may be possible. Finally, we can also explore
advanced segmentation techniques by using pre-trainned
regional proposing CNN to detect individual cells, such as
the research work presented in (Johannesu, 2017).
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