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We want smaller,
faster networks

without compromising
on accuracy

Why do we care!

Designing neural
networks is expensive
(takes human
expertise)

We want the best
network for a
particular task




Two

paradigms for
NAS
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NETS OF OLD

Convolutional neural network designs before 2015 tended to be rather ad hoc



The repeating
block

o ResNets popularized the
idea of having repeating
blocks to make up a
network

relu




34-layer residual
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ResNet34

Blocks = [3 4 6 3]

Channels = [64 128 256 512]
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THINGS GET SILLY QUITE QUICKLY




Sample architecture A
with probability p

( v

Trains a child network
The controller (RMNN) with architecture
A to get accuracy R

{ J

Comaute gradient of p and
scale it by R to update
the controller

NEURALARCHITECTURE
SEARCHWITH RL (ZOPH &
LE, ICLR 2017)

LEARNING THEWHOLE
NETWORK IS EXTREMELY
EXPENSIVEAND PAINFUL!

800 GPUS FORA MONTH |
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AN ALL-PURPOSE
ARCHITECTURE

LEARN A CELL RATHER
THAN AWHOLE
NETWORK (CHEAPER)

N DEPENDING ON
BUDGET




The building block in DARTS




LEARNING TRANSFERABLE
ARCHITECTURES FOR
SCALABLE IMAGE
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450 GPUs for 3 days



Weight sharing to
the rescue™

Fixed weight for each
connection e.g. between
intermediate 0 and
intermediate | we have WO

Don’t have to train from
scratch every time

Only 16 hours on | GPU

**weight sharing ruins everything
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Figure 4: Normal cell learned on CIFAR-10.
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Architecture

Test Error
(%)

Params
(M)

Search Cost
(GPU days)

DenseNet-BC (Huang et al., 2017)

3.46

25.6

NASNet-A + cutout (Zoph et al., 2018)
NASNet-A + cutout (Zoph et al., 2018)1
BlockQNN (Zhong et al., 2018)
AmoebaNet-A (Real et al., 2018)
AmoebaNet-A + cutout (Real et al., 2018)7

AmoebalNet-B + cutout (Real et al., 2018)
Hierarchical evolution (Liu et al., 2018b)
PNAS (Liu et al., 2018a)

ENAS + cutout (Pham et al., 2018b)
ENAS + cutout (Pham et al., 2018b)"

2.65
2.83
3.54
3.34 £+ 0.06
3.12
2.55 +0.05
3.75 £ 0.12
3.41 £ 0.09
2.89
2.91

3.3
3.1
39.8
3.2
3.1
2.8
15.7
3.2
4.6
4.2

2000
2000
96
3150
3150
3150
300
225
0.5

evolution
evolution
evolution
evolution
SMBO
RL
RL

Random search baseline* + cutout
DARTS (first order) + cutout
DART'S (second order) + cutout

3.29 £ 0.15
3.00 = 0.14
2.76 = 0.09

3.2
3.3
3.3

random
gradient-based
gradient-based




Evaluating the

Search Phase
of NAS (Yu

et al. ICLR,

2020)

o Random is similar to NAS!

o Constrained search space is very good

o Weight sharing ruins rank
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{a) Architccture perfonmance with and without WS bj Rmﬂ:::i:'crcm:;:lmts'cl:;}::shaﬁlmg c) Examplc

PTB (PPL) t-test | CIFAR-10 (acc.) t-test

ENAS 5988 +1.92 0.73 96.79 + 0.11 0.01

DARTS | 60.61 £2.54 0.62 96.62 + (.23 0.20

NAO 61.99 =195 0.02 96.86 = 0.17 0.00
Random | 60.13 & 0.65 - 96.44 + 0.19 :
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Two
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WEIGHT PRUNING




Classic Approach to Weight Pruning (Based
on Han et al. ICLR 201 6)

TAKE A LARGE TRAINED RANK CONNECTIONS KILL WEAKEST FINE-TUNE
NETWORK (E.G.BY MAGNITUDE CONNECTIONS
OF EACH WEIGHT)




The Lottery Ticket Hypothesis (Frankle and
Carbin, ICLR 2019)

They postulate that within a network there This is found through weight pruning
exists a sparse subnetwork that was
fortuitously initialized (a lottery ticket)




SNIP (Lee et al,, ICLR 2019)

D> S SO N

Take a large Push a single Look at the Remove weakest Train from scratch
untrained minibatch through connection connections
network sensitivity




Wegh. Pruning

— The problem with
sparse networks
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CHANNEL PRUNING (RIGHT)




Core i7 (CPU) 1080Ti (GPU)

Network Params Error Speed MACs/ps Speed MACs/ps
ResNet-18 11.6M 30.24  0.060s 3.03  0.002s 101.3
ResNet-34-A  12.5M 28.14 0.085s 2.83  0.004s 72.0

STILL NOT
AS FAST

ResNet-34-B 7.5M 30.77 0.066s 271 0.003s 49.6
ResNet-9 5.4M 37.04  0.035s 252 0.001s 79.0
ResNet-34-C 4.9M 3349 0.054s 228 0.003s 35.4
ResNet-34-D 2.5M 38.88  0.042s 116 0.003s 18.0

Channel pruning relies on reducing channel width which
is hardware-unfriendly

Turns out training a smaller version (e.g. lower depth,
width) of the original large network is faster and as
good!

Paper worthy?




Nope! ICML 2019 Reviews (Reject) ®

“Unfortunately, the authors do not seem to understand two primary goals of pruning: ) reducing the

number of weights for storage/bandwidth efficiency and 2) use in (not yet existing) hardware with
sparse arithmetic support.”

“This paper did not propose any new method and only reported some simple pruning experiments. The
novelty is limited.”

“The paper is well-written and performs an interesting set of experiments. My main concern is that there
is little novelty in this work which reduces the significance of the contributions.”




But sometimes...

[ Paper Decision
JCLR 2020 Conference Program Chairs
19 Dec 2015 |modifled: 20 Dec 2019 1CLA 2020 Conference Paper1%83 Declslon Readers: (A Everyone
Decision: Accepl (Posler)
Comment! This paper is far mone bordeslice han the review scores indicate. The suthors certainly did themselves no favours by posting a response
20 close to the end of the discussion period, but there was sufficlent tme o conslder the rasponses afer this, and it Is somewhat disappeinting that
the roviewers did not cngage,

Reyiewer 2 states that their only reason for not recommending acceptance is the ‘ack of experiments on more than one KG. The authors point out they
mave exprriments an more than aee KGin the papes, Frame my reacing, this is the case, Twadll consicder B2 in favour of the paper in the ahsence of o

‘ESpONSE.

Rewviemer 3 gives a lairly clear inital review which states the main reasons ey do nol recarmmend acceplance. While nol an expert on the tepic of
GNNs, 1 have enough of 3 technical understanding to deem that the detailed response from the authors o each of the points does address thesz
concerns, I the ahsence of a respanse from the reviewesr, it is difficalt to ascertain whether they would agree, but Twill lean towards assuming they
ara sausfied.

Ravisamer 1 gives a positive sounding review, with as main criticisen "Overall, the work of this psper seems ischnically sound bal Tdoen't Tnd the
contrbutlons gartlcularky surprising or novel. Along with ploglcner, there have been many extensions and applications of Cans, and Ldidn’t fing that
the pager expands this porspective in any surprising way,”" This statement is simply re-asserted after the author response, [ find this style of roview
envrely inappropriate and untair: it is neta the role af a good sciendfic publicaton ta “surprise”. 1Tit is technically saund, and 'n an area that the
rewievier admits generates interast from reviewers, vaque weasel words do not & reason for rejection make.

Irecommend acceptance.




WARNING:
SHAMELESS SELF-

PROMOTIONTO
FOLLOW




BlockSwap (Turner et al. ICLR 2020)
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1. Sample random architectures 2. Rank by Fisher potential
after one minibatch

Takes 5 minutes on | GPU

3. Train with AT




We use the very simple blocks from
Moonshine (Crowley et al., NeurlPS 2018)

Block S G(g) B(b) BG(b, g)
Structure Conv GConv (g) ConvIxI(N — ) Convix1(N — )
Conv Convlxl Conv GConv(g)
GConv (g) Conlel(% — N) Conlel(% — N)
Convlixl
Conv Params 2N?2k? 2N2(%+1) Nz(%—i-%) Nz(%‘*‘%)

BN Params 4N 8N N2+ 5 N2+ 3)
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®
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No. Parameters
o Works well (similar to DARTS despite the search being 300x faster)

o And works better than random!




Thank you!

o Email elliot.j.crowley@ed.ac.uk

o Or visit bayeswatch.com for our group work




