### Recurrent Neural Networks 2: LSTM, gates, and attention

Hakan Bilen

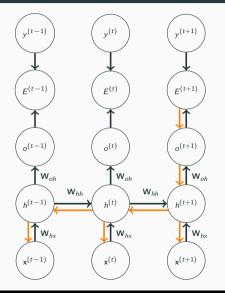
Machine Learning Practical — MLP Lecture 10

19 November 2019

#### **Coursework 1 Overview Feedback**

- Almost everyone did a very good job, code passed the unit tests, reports were well written and structured
- Most people:
  - carried out experiments well, clearly presented results with graphs and tables
  - gave a reasonable discussion of the results
  - used references to the literature
  - clearly described the EMNIST task and experiments, the activation functions
- However, some people
  - did not make clear that composition of linear transformations is linear too
  - used references incorrectly
  - did not present results in the clearest way (too many graphs)
- Many did not meaningfully discuss whether small differences in results are significant
- The best reports discussed the "why" as well as the "what"...

#### Simple RNN with recurrent hidden unit



- Recurrence through hidden units
- Hidden units can be thought as memory
- Effective network depth equals to the input sequence length
- BPTT involves backpropagating the error through the previous time steps (layers)

#### Vanishing and exploding gradients

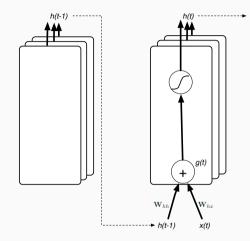
- BPTT involves taking the product of many gradients (as in a very deep network)
   this can lead to vanishing (component gradients less than 1) or exploding (greater than 1) gradients
- This can prevent effective training
- Modified optimisation algorithms
  - RMSProp (and similar algorithms) normalise the gradient for each weight by average of it magnitude, with a learning rate for each weight
  - Gradient clipping prevent large noisy gradients
- Modified hidden unit transfer functions:

Long short term memory (LSTM)

- Linear self-recurrence for each hidden unit (long-term memory)
- Gates dynamic weights which are a function of their inputs

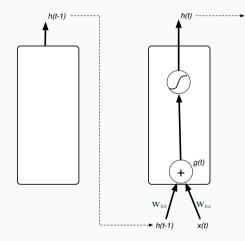
# Long Short-Term Memory LSTM

#### Simple recurrent network unit



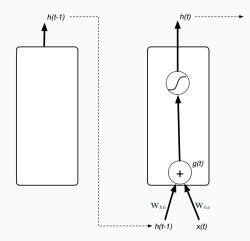
$$egin{aligned} \mathbf{g}(t) &= \mathbf{W}_{hx}\mathbf{x}(t) + \mathbf{W}_{hh}\mathbf{h}(t-1) + \mathbf{b}_h \ \mathbf{h}(t) &= ext{tanh}\left(\mathbf{g}(t)
ight) \end{aligned}$$

#### Simple recurrent network unit

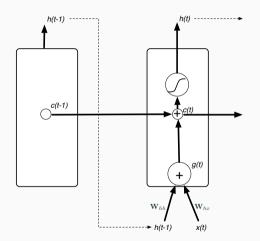


$$egin{aligned} \mathbf{g}(t) &= \mathbf{W}_{h imes}\mathbf{x}(t) + \mathbf{W}_{hh}\mathbf{h}(t-1) + \mathbf{b}_h \ \mathbf{h}(t) &= anh\left(\mathbf{g}(t)
ight) \end{aligned}$$

LSTM

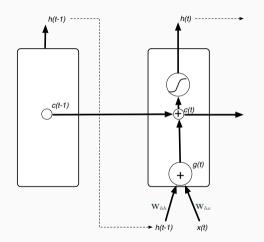


#### LSTM – Internal recurrent state



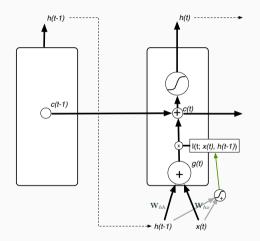
Internal recurrent state ("cell") c(t)
 combines previous state c(t - 1) and g(t)

#### LSTM – Internal recurrent state



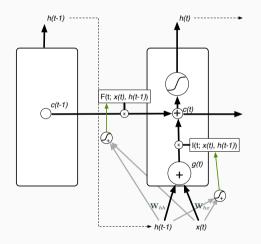
- Internal recurrent state ("cell") c(t)
   combines previous state c(t 1) and g(t)
- Gates weights dependent on the current input and the previous state

#### LSTM – Input Gate



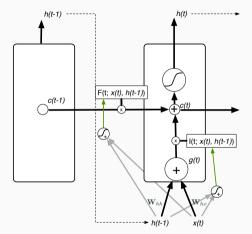
- Internal recurrent state ("cell") c(t)
   combines previous state c(t 1) and g(t)
- Gates weights dependent on the current input and the previous state
- Input gate: controls how much input to the unit g(t) is written to the internal state c(t)

#### LSTM – Forget Gate



- Internal recurrent state ("cell") c(t)
   combines previous state c(t 1) and g(t)
- Gates weights dependent on the current input and the previous state
- Input gate: controls how much input to the unit g(t) is written to the internal state c(t)
- Forget gate: controls how much of the previous internal state c(t - 1) is written to the internal state c(t)
  - Input and forget gates together allow the network to control what information is stored and overwritten at each step

#### LSTM – Input and Forget Gates



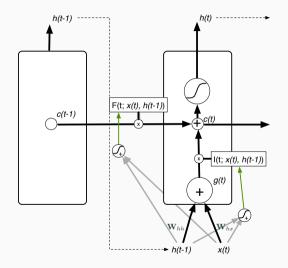
$$\mathbf{I}(t) = \sigma \left( \mathbf{W}_{ix} \mathbf{x}(t) + \mathbf{W}_{ih} \mathbf{h}(t-1) + \mathbf{b}_i \right)$$
  
$$\mathbf{F}(t) = \sigma \left( \mathbf{W}_{fx} \mathbf{x}(t) + \mathbf{W}_{fh} \mathbf{h}(t-1) + \mathbf{b}_f \right)$$

$$\begin{split} \mathbf{g}(t) &= \mathbf{W}_{hx} \mathbf{x}(t) + \mathbf{W}_{hh} \mathbf{h}(t-1) + \mathbf{b}_h \\ \mathbf{c}(t) &= \mathbf{F}(t) \odot \mathbf{c}(t-1) + \mathbf{I}(t) \odot \mathbf{g}(t) \end{split}$$

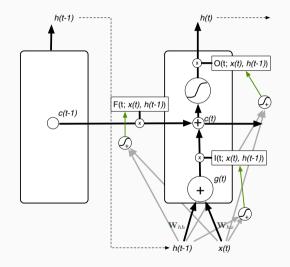
 $\sigma$  is the sigmoid function

 $\odot$  is element-wise vector multiply

#### LSTM – Input and Forget Gates

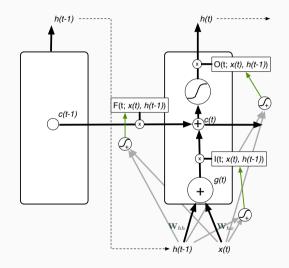


#### LSTM – Output Gate



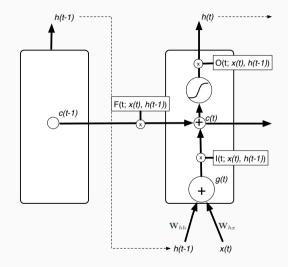
• Output gate: controls how much of each unit's activation is output by the hidden state – it allows the LSTM cell to keep information that is not relevant at the current time, but may be relevant later

#### LSTM – Output Gate



$$egin{aligned} \mathsf{D}(t) &= \sigma \left( \mathsf{W}_{ox} \mathsf{x}(t) + \mathsf{W}_{oh} \mathsf{h}(t-1) + \mathsf{b}_{o} 
ight) \ \mathsf{h}(t) &= \mathsf{O}(t) \odot ext{tanh}\left( \mathsf{c}(t) 
ight) \end{aligned}$$

#### LSTM equations



$$I(t) = \sigma (\mathbf{W}_{ix}\mathbf{x}(t) + \mathbf{W}_{ih}\mathbf{h}(t-1) + \mathbf{b}_i)$$

$$F(t) = \sigma (\mathbf{W}_{fx}\mathbf{x}(t) + \mathbf{W}_{fh}\mathbf{h}t - 1) + \mathbf{b}_f)$$

$$O(t) = \sigma (\mathbf{W}_{ox}\mathbf{x}(t) + \mathbf{W}_{oh}\mathbf{h}(t-1) + \mathbf{b}_o)$$

$$g(t) = \mathbf{W}_{hx}\mathbf{x}(t) + \mathbf{W}_{hh}\mathbf{h}(t-1) + \mathbf{b}_h$$

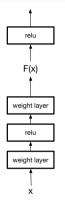
$$c(t) = F(t) \odot c(t-1) + I(t) \odot g(t)$$

$$h(t) = O(t) \odot \tanh(c(t))$$

- Goodfellow et al, chapter 10
- C Olah (2015), Understanding LSTMs, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- A Karpathy et al (2015), Visualizing and Understanding Recurrent Networks, https://arxiv.org/abs/1506.02078

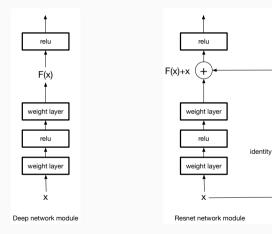
## More gating units

#### Gating units in highway networks

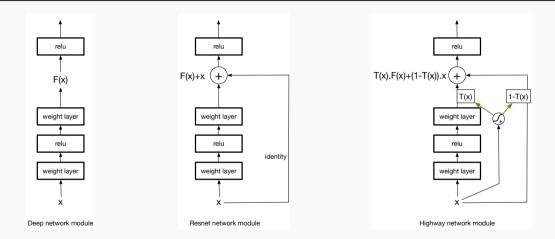


Deep network module

#### Gating units in highway networks

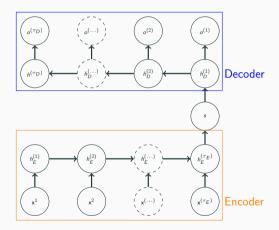


#### Gating units in highway networks



Srivastava et al, 2015, Training Very Deep Networks, NIPS-2015, https://arxiv.org/abs/1507.06228

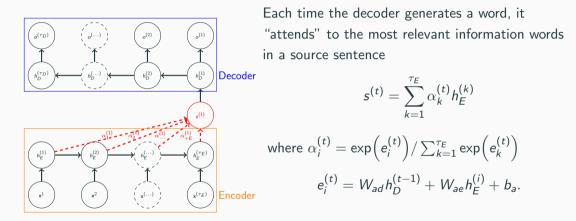
#### Sequence-to-sequence model ("seq2seq")



- Encoder and decoder use LSTM
- The encoder summarizes the whole input sequence into a single context vector  $s = h_E^{\tau_E}$
- Performs poorly as the length of an input sentence increases

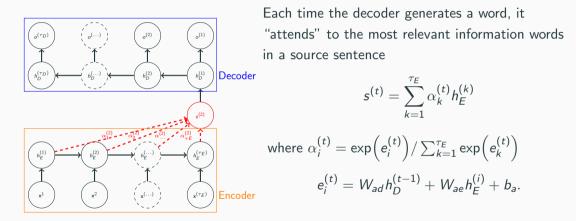
Sutskever et al, "Sequence to sequence learning with neural networks." NeurIPS2014.

#### Gating for attention in seq2seq



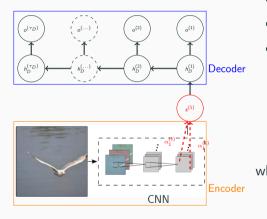
Bahdanau et al. "Neural Machine Translation by Jointly Learning to Align and Translate", NeurIPS2016.

#### Gating for attention in seq2seq



Bahdanau et al. "Neural Machine Translation by Jointly Learning to Align and Translate", NeurIPS2016.

#### Gating for attention in vec2seq

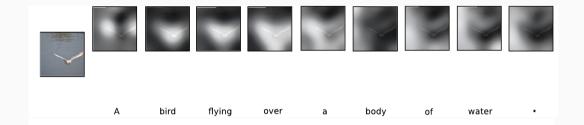


- CNN as encoder and LSTM as decoder
- CNN extracts *L* features {**x**<sup>1</sup>,...,**x**<sup>*L*</sup>}
- Each time the decoder generates a word, it "attends" to the most relevant information image feature

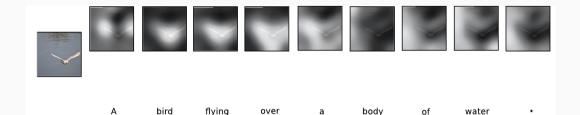
$$s^{(t)} = \sum_{k=1}^{L} \alpha_k^{(t)} x^{(k)}$$
  
Here  $\alpha_i^{(t)} = \exp\left(e_i^{(t)}\right) / \sum_{k=1}^{\tau_E} \exp\left(e_k^{(t)}\right)$   
 $e_i^{(t)} = W_{ad} h_D^{(t-1)} + W_{ax} x^{(i)} + b_a$ 

Xu et al. "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML2015.

#### Gating for attention in vec2seq



#### Gating for attention in vec2seq





A woman is throwing a <u>frisbee</u> in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

#### Summary

- Vanishing gradient problem
- LSTMs and gating
- Examples:
  - Highway network module
  - Seq2seq for machine translation
  - Vec2seq for image captioning
- Next week: Introduction to semester 2 projects