
Convolutional Networks 2: Training, deep convolutional

networks

Hakan Bilen

Machine Learning Practical — MLP Lecture 8

29 October / 5 November 2019

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 1

Recap: Receptive field (kernel size = 5)

, As the depth increases, the local receptive field gets larger.

.

. . .

conv

conv

pooling

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 2

Receptive field (kernel size = 1)

conv

conv

pooling

. . .

. . .

. . .

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 3

Receptive field (kernel size = 1)

/ A bad network design: Pooled pixel classifiers!

conv

conv

pooling

. . .

. . .

. . .

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 3

Increasing receptive field size

• Increasing kernel size: additional weights and computation

• Pooling: loss of resolution

Dilated convolution:

• Enlarges receptive field by inflating the kernel by inserting d − 1 spaces between

the kernel elements

• Results in same number of weights and computations

• Preserves the original resolution with padding

Yu & Koltun, “Multi-scale context aggregation by dilated convolutions”, ICLR, 2016.

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 4

https://arxiv.org/abs/1511.07122

Increasing receptive field size

• Increasing kernel size: additional weights and computation

• Pooling: loss of resolution

Dilated convolution:

• Enlarges receptive field by inflating the kernel by inserting d − 1 spaces between

the kernel elements

• Results in same number of weights and computations

• Preserves the original resolution with padding

Yu & Koltun, “Multi-scale context aggregation by dilated convolutions”, ICLR, 2016.

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 4

https://arxiv.org/abs/1511.07122

Dilated convolutions (d = 2)

Enlarges receptive field by inflating the kernel by inserting d − 1 spaces between the

kernel elements

. . .

. . .

dilated conv

dilated conv

conv

padding

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 5

Training Convolutional Networks

fprop

conv

h(l−1)

z(l)

{w(l),b(l)}

f

h(l)

conv layer

f: activation function

bprop

conv

∂E
∂h(l−1) = ∂E

∂z(l)
∂h(l)

∂h(l−1)

∂E
∂z(l) = ∂E

∂h(l)
∂h(l)

∂z(l)

∂E
∂w(l) = ∂E

∂z(l)
∂z(l)

∂w(l)

f

∂E
∂h(l)

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 6

Training Convolutional Networks

fprop

conv

h(l−1)

z(l)

{w(l),b(l)}

f

h(l)

conv layer

f: activation function

bprop

conv

∂E
∂h(l−1) = ∂E

∂z(l)
∂h(l)

∂h(l−1)

∂E
∂z(l) = ∂E

∂h(l)
∂h(l)

∂z(l)

∂E
∂w(l) = ∂E

∂z(l)
∂z(l)

∂w(l)

f

∂E
∂h(l)

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 6

Example

(
z

(l)
00 z

(l)
01

z
(l)
10 z

(l)
11

)
︸ ︷︷ ︸

z(l)

=

h
(l−1)
00 h

(l−1)
01 h

(l−1)
02

h
(l−1)
10 h

(l−1)
11 h

(l−1)
12

h
(l−1)
20 h

(l−1)
21 h

(l−1)
22


︸ ︷︷ ︸

h(l−1)

⊗
(
w

(l)
00 w

(l)
01

w
(l)
10 w

(l)
11

)
︸ ︷︷ ︸

w (l)

+b

z
(l)
00 = w

(l)
00 h

(l−1)
00 + w

(l)
01 h

(l−1)
01 + w

(l)
10 h

(l−1)
10 + w

(l)
11 h

(l−1)
11 + b

z
(l)
01 = w

(l)
00 h

(l−1)
01 + w

(l)
01 h

(l−1)
02 + w

(l)
10 h

(l−1)
11 + w

(l)
11 h

(l−1)
12 + b

z
(l)
10 = w

(l)
00 h

(l−1)
10 + w

(l)
01 h

(l−1)
11 + w

(l)
10 h

(l−1)
20 + w

(l)
11 h

(l−1)
21 + b

z
(l)
11 = w

(l)
00 h

(l−1)
11 + w

(l)
01 h

(l−1)
12 + w

(l)
10 h

(l−1)
21 + w

(l)
11 h

(l−1)
22 + b

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 7

Gradients of E w.r.t w(l)

z
(l)
00 = w

(l)
00 h

(l−1)
00 + w

(l)
01 h

(l−1)
01 + w

(l)
10 h

(l−1)
10 + w

(l)
11 h

(l−1)
11 + b

z
(l)
01 = w

(l)
00 h

(l−1)
01 + w

(l)
01 h

(l−1)
02 + w

(l)
10 h

(l−1)
11 + w

(l)
11 h

(l−1)
12 + b

z
(l)
10 = w

(l)
00 h

(l−1)
10 + w

(l)
01 h

(l−1)
11 + w

(l)
10 h

(l−1)
20 + w

(l)
11 h

(l−1)
21 + b

z
(l)
11 = w

(l)
00 h

(l−1)
11 + w

(l)
01 h

(l−1)
12 + w

(l)
10 h

(l−1)
21 + w

(l)
11 h

(l−1)
22 + b

Let’s derive the parameter updates (∂E
∂w(l))

∂E

∂w
(l)
00

=
∂E

∂z
(l)
00

∂z
(l)
00

∂w
(l)
00

+
∂E

∂z
(l)
01

∂z
(l)
01

∂w
(l)
00

+
∂E

∂z
(l)
10

∂z
(l)
10

∂w
(l)
00

+
∂E

∂z
(l)
11

∂z
(l)
11

∂w
(l)
00

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 8

Gradients of E w.r.t w(l)

z
(l)
00 = w

(l)
00 h

(l−1)
00 + w

(l)
01 h

(l−1)
01 + w

(l)
10 h

(l−1)
10 + w

(l)
11 h

(l−1)
11 + b

z
(l)
01 = w

(l)
00 h

(l−1)
01 + w

(l)
01 h

(l−1)
02 + w

(l)
10 h

(l−1)
11 + w

(l)
11 h

(l−1)
12 + b

z
(l)
10 = w

(l)
00 h

(l−1)
10 + w

(l)
01 h

(l−1)
11 + w

(l)
10 h

(l−1)
20 + w

(l)
11 h

(l−1)
21 + b

z
(l)
11 = w

(l)
00 h

(l−1)
11 + w

(l)
01 h

(l−1)
12 + w

(l)
10 h

(l−1)
21 + w

(l)
11 h

(l−1)
22 + b

Let’s derive the parameter updates (∂E
∂w(l))

∂E

∂w
(l)
00

=
∂E

∂z
(l)
00

h
(l−1)
00 +

∂E

∂z
(l)
01

h
(l−1)
01 +

∂E

∂z
(l)
10

h
(l−1)
10 +

∂E

∂z
(l)
11

h
(l−1)
11

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 8

Gradients of E w.r.t w(l)

∂E

∂w
(l)
00

=
∂E

∂z
(l)
00

h
(l−1)
00 +

∂E

∂z
(l)
01

h
(l−1)
01 +

∂E

∂z
(l)
10

h
(l−1)
10 +

∂E

∂z
(l)
11

h
(l−1)
11

∂E

∂w
(l)
01

=
∂E

∂z
(l)
00

h
(l−1)
01 +

∂E

∂z
(l)
01

h
(l−1)
02 +

∂E

∂z
(l)
10

h
(l−1)
11 +

∂E

∂z
(l)
11

h
(l−1)
12

∂E

∂w
(l)
10

=
∂E

∂z
(l)
00

h
(l−1)
10 +

∂E

∂z
(l)
01

h
(l−1)
11 +

∂E

∂z
(l)
10

h
(l−1)
20 +

∂E

∂z
(l)
11

h
(l−1)
21

∂E

∂w
(l)
11

=
∂E

∂z
(l)
00

h
(l−1)
11 +

∂E

∂z
(l)
01

h
(l−1)
12 +

∂E

∂z
(l)
10

h
(l−1)
21 +

∂E

∂z
(l)
11

h
(l−1)
22

Assume that z(l) is m × n dimensional

∂E

∂w
(l)
p,q

=
m−1∑
i=0

n−1∑
j=0

∂E

∂z
(l)
i ,j

h
(l−1)
p+i ,q+j

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 9

Gradients of E w.r.t w(l)

∂E

∂w
(l)
p,q

=
m−1∑
i=0

n−1∑
j=0

h
(l−1)
p+i ,q+j

∂E

∂z
(l)
i ,j

Gradients of E w.r.t w(l) can be computed as cross-correlation between the previous

feature map (h(l−1)) and gradients of E w.r.t z(l)

.  ∂E

∂w
(l)
00

∂E

∂w
(l)
01

∂E

∂w
(l)
10

∂E

∂w
(l)
11


︸ ︷︷ ︸

∂E

∂w(l)

=

h
(l−1)
00 h

(l−1)
01 h

(l−1)
02

h
(l−1)
10 h

(l−1)
11 h

(l−1)
12

h
(l−1)
20 h

(l−1)
21 h

(l−1)
22


︸ ︷︷ ︸

h(l−1)

⊗

 ∂E

∂z
(l)
00

∂E

∂z
(l)
01

∂E

∂z
(l)
10

∂E

∂z
(l)
11


︸ ︷︷ ︸

∂E

∂z(l)

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 10

Gradients of E w.r.t z (l−1)

fprop

conv

h(l−1)

z(l)

{w(l),b(l)}

f

h(l)

conv layer

f: activation function

bprop

conv

∂E
∂h(l−1) = ∂E

∂z(l)
∂h(l)

∂h(l−1)

∂E
∂z(l) = ∂E

∂h(l)
∂h(l)

∂z(l)

∂E
∂w(l) = ∂E

∂z(l)
∂z(l)

∂w(l)

f

∂E
∂h(l)

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 11

Gradients of E w.r.t z (l−1)

z
(l)
00 = w

(l)
00 h

(l−1)
00 + w

(l)
01 h

(l−1)
01 + w

(l)
10 h

(l−1)
10 + w

(l)
11 h

(l−1)
11 + b

z
(l)
01 = w

(l)
00 h

(l−1)
01 + w

(l)
01 h

(l−1)
02 + w

(l)
10 h

(l−1)
11 + w

(l)
11 h

(l−1)
12 + b

z
(l)
10 = w

(l)
00 h

(l−1)
10 + w

(l)
01 h

(l−1)
11 + w

(l)
10 h

(l−1)
20 + w

(l)
11 h

(l−1)
21 + b

z
(l)
11 = w

(l)
00 h

(l−1)
11 + w

(l)
01 h

(l−1)
12 + w

(l)
10 h

(l−1)
21 + w

(l)
11 h

(l−1)
22 + b

Let’s derive the gradients of error function (E) w.r.t previous feature map (h(l−1))

∂E

∂h
(l−1)
00

=
∂E

∂z
(l)
00

∂z
(l)
00

∂h
(l−1)
00

+
∂E

∂z
(l)
01

∂z
(l)
01

∂h
(l−1)
00

+
∂E

∂z
(l)
10

∂z
(l)
10

∂h
(l−1)
00

+
∂E

∂z
(l)
11

∂z
(l)
11

∂h
(l−1)
00

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 12

Gradients of E w.r.t z (l−1)

z
(l)
00 = w

(l)
00 h

(l−1)
00 + w

(l)
01 h

(l−1)
01 + w

(l)
10 h

(l−1)
10 + w

(l)
11 h

(l−1)
11 + b

z
(l)
01 = w

(l)
00 h

(l−1)
01 + w

(l)
01 h

(l−1)
02 + w

(l)
10 h

(l−1)
11 + w

(l)
11 h

(l−1)
12 + b

z
(l)
10 = w

(l)
00 h

(l−1)
10 + w

(l)
01 h

(l−1)
11 + w

(l)
10 h

(l−1)
20 + w

(l)
11 h

(l−1)
21 + b

z
(l)
11 = w

(l)
00 h

(l−1)
11 + w

(l)
01 h

(l−1)
12 + w

(l)
10 h

(l−1)
21 + w

(l)
11 h

(l−1)
22 + b

Let’s derive the gradients of error function (E) w.r.t previous feature map (h(l−1))

∂E

∂h
(l−1)
00

=
∂E

∂z
(l)
00

w
(l)
00

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 12

Gradients of E w.r.t z (l−1)

∂E

∂h
(l−1)
00

=
∂E

∂z
(l)
00

w
(l)
00

∂E

∂h
(l−1)
01

=
∂E

∂z
(l)
00

w
(l)
01 +

∂E

∂z
(l)
01

w
(l)
00

∂E

∂h
(l−1)
02

=
∂E

∂z
(l)
01

w
(l)
01

...

∂E

∂h
(l−1)
11

=
∂E

∂z
(l)
00

w
(l)
11 +

∂E

∂z
(l)
01

w
(l)
10 +

∂E

∂z
(l)
10

w
(l)
01 +

∂E

∂z
(l)
11

w
(l)
00

...

∂E

∂h
(l−1)
22

=
∂E

∂z
(l)
11

w
(l)
11

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 13

Gradients of E w.r.t h(l−1)

Gradients of E w.r.t the previous feature map h(l−1) can be computed as

cross-correlation between the “padded” gradients of E w.r.t z(l) and 1800 rotated

conv. kernel w(l)


∂E

∂h
(l−1)
00

∂E

∂h
(l−1)
01

∂E

∂h
(l−1)
02

∂E

∂h
(l−1)
10

∂E

∂h
(l−1)
11

∂E

∂h
(l−1)
12

∂E

∂h
(l−1)
20

∂E

∂h
(l−1)
21

∂E

∂h
(l−1)
22


︸ ︷︷ ︸

∂E

∂h(l−1)

=


0 0 0 0

0 ∂E

∂z
(l)
00

∂E

∂z
(l)
01

0

0 ∂E

∂z
(l)
10

∂E

∂z
(l)
11

0

0 0 0 0


︸ ︷︷ ︸

Padded ∂E

∂z(l)

⊗
(
w

(l)
11 w

(l)
10

w
(l)
01 w

(l)
00

)
︸ ︷︷ ︸

Rotated w(l)

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 14

Implementing fully-connected networks

Example at a time:

input vector

weight matrix

output vector

d k k

d

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 15

Implementing fully-connected networks

Minibatch:

input vector
(minibatch) weight matrix

output vector
(minibatch)

d k k

dn n

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 15

Implementing fully-connected networks

Minibatch:

input vector
(minibatch) weight matrix

output vector
(minibatch)

d k k

dn n

input dimension x minibatch: Represent each layer as a 2-dimension matrix, where

each row corresponds to a training example, and the number of minibatch examples is

the number of rows
MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 15

Implementing Convolutional Networks

Example at a time, single input image, single feature map:

input image weight matrix
(kernel)

feature map

x m

l

y

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 16

Implementing Convolutional Networks

Example at a time, single input image, multiple feature map:

input image weight matrices
(kernels)

feature maps

x m

l

y

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 16

Implementing Convolutional Networks

Example at a time, multiple input images, multiple feature map:

multiple
input images

weight matrices
(kernels)

feature maps

x

l

y

m

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 16

Implementing Convolutional Networks

Minibatch, multiple input images, multiple feature map:

minibatch of
multiple

input images

weight matrices
(kernels)

minibatch of
feature maps

x

l

y

m

.
nn

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 16

Implementing Convolutional Networks

• Inputs / layer values:

• Each input image (and convolutional and pooling layer) is 2-dimensions (x,y)

• If we have multiple feature maps, then that is a third dimension

• And the minibatch adds a fourth dimension

• Thus we represent each input (layer values) using a 4-dimension tensor (array):

(minibatch-size, num-feature-maps, x, y)

• Weight matrices (kernels)

• Each weight matrix used to scan across an image has 2 spatial dimensions (x,y)

• If there are multiple feature maps to be computed, then that is a third dimension

• Multiple input feature maps adds a fourth dimension

• Thus the weight matrices are also represented using a 4-dimension tensor: (Fin, Fout,

x, y)

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 17

4D tensors in numpy

Both forward and back prop thus involves multiplying 4D tensors. There are various

ways to do this:

• Explicitly loop over the dimensions: this results in simpler code, but can be

inefficient. Although using cython to compile the loops as C can speed things up

• Serialisation: By replicating input patches and weight matrices, it is possible to

convert the required 4D tensor multiplications into a large dot product. Requires

careful manipulation of indices!

• Convolutions: use explicit convolution functions for forward and back prop,

rotating for the backprop

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 18

Deep

convolutional networks

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 19

LeNet5 (LeCun et al, 1997)

• 2 convolutional layers {C1, C3} + non-linearity (tanh)

• 2 average pooling {S2, S4}
• 2 fully connected hidden layer (no weight sharing) {C5, F6}
• Softmax classifier layer

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 20

ImageNet Classification (“AlexNet”) 2012

Dual GPU architecture Error rates in the ILSVRC-2012

• Outperformed the that uses hand-crafted features in object classification

• 5 convolutional layers with ReLU + 3 fully connected layers

• 3 max pooling layers

Krizhevsky, Sutskever and Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”,

NIPS’12. http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 21

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

ImageNet Classification (“VGGNet”) 2014

• deeper than AlexNet, 13 conv. + 3 fc layers

• 3× 3 conv. kernels – very small

• conv. stride 1 – no loss of resolution

• ReLU non-linearity

• vanishing/exploding gradients problem: train shallower

networks and gradually add new layers

Simonyan and Zisserman, “Very Deep Convolutional Networks for

Large-Scale Visual Recognition”, ICLR 2015.

softmax

fc1000

fc4096

fc4096

maxpool

conv512

conv512

conv512

maxpool

conv512

conv512

conv512

maxpool

conv256

conv256

conv256

maxpool

conv128

conv128

maxpool

conv64

conv64

image224 × 224

112 × 112

56 × 56

28 × 28

14 × 14

7 × 7

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 22

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556

ImageNet Classification (“GoogLeNet”) 2014

1x1 convolutions 3x3 convolutions 5x5 convolutions

Filter
concatenation

Previous layer

3x3 max pooling

(a) Inception module, naı̈ve version

1x1 convolutions

3x3 convolutions 5x5 convolutions

Filter
concatenation

Previous layer

3x3 max pooling1x1 convolutions 1x1 convolutions

1x1 convolutions

(b) Inception module with dimensionality reduction

Figure 2: Inception module

ber of filters in the previous stage. The merging of output
of the pooling layer with outputs of the convolutional lay-
ers would lead to an inevitable increase in the number of
outputs from stage to stage. While this architecture might
cover the optimal sparse structure, it would do it very inef-
ficiently, leading to a computational blow up within a few
stages.

This leads to the second idea of the Inception architec-
ture: judiciously reducing dimension wherever the compu-
tational requirements would increase too much otherwise.
This is based on the success of embeddings: even low di-
mensional embeddings might contain a lot of information
about a relatively large image patch. However, embed-
dings represent information in a dense, compressed form
and compressed information is harder to process. The rep-
resentation should be kept sparse at most places (as required
by the conditions of [2]) and compress the signals only
whenever they have to be aggregated en masse. That is,
1×1 convolutions are used to compute reductions before
the expensive 3×3 and 5×5 convolutions. Besides being
used as reductions, they also include the use of rectified lin-
ear activation making them dual-purpose. The final result is
depicted in Figure 2(b).

In general, an Inception network is a network consist-
ing of modules of the above type stacked upon each other,
with occasional max-pooling layers with stride 2 to halve
the resolution of the grid. For technical reasons (memory

efficiency during training), it seemed beneficial to start us-
ing Inception modules only at higher layers while keeping
the lower layers in traditional convolutional fashion. This is
not strictly necessary, simply reflecting some infrastructural
inefficiencies in our current implementation.

A useful aspect of this architecture is that it allows for
increasing the number of units at each stage significantly
without an uncontrolled blow-up in computational com-
plexity at later stages. This is achieved by the ubiquitous
use of dimensionality reduction prior to expensive convolu-
tions with larger patch sizes. Furthermore, the design fol-
lows the practical intuition that visual information should
be processed at various scales and then aggregated so that
the next stage can abstract features from the different scales
simultaneously.

The improved use of computational resources allows for
increasing both the width of each stage as well as the num-
ber of stages without getting into computational difficulties.
One can utilize the Inception architecture to create slightly
inferior, but computationally cheaper versions of it. We
have found that all the available knobs and levers allow for
a controlled balancing of computational resources resulting
in networks that are 3− 10× faster than similarly perform-
ing networks with non-Inception architecture, however this
requires careful manual design at this point.

5. GoogLeNet
By the“GoogLeNet” name we refer to the particular in-

carnation of the Inception architecture used in our submis-
sion for the ILSVRC 2014 competition. We also used one
deeper and wider Inception network with slightly superior
quality, but adding it to the ensemble seemed to improve the
results only marginally. We omit the details of that network,
as empirical evidence suggests that the influence of the ex-
act architectural parameters is relatively minor. Table 1 il-
lustrates the most common instance of Inception used in the
competition. This network (trained with different image-
patch sampling methods) was used for 6 out of the 7 models
in our ensemble.

All the convolutions, including those inside the Incep-
tion modules, use rectified linear activation. The size of the
receptive field in our network is 224×224 in the RGB color
space with zero mean. “#3×3 reduce” and “#5×5 reduce”
stands for the number of 1×1 filters in the reduction layer
used before the 3×3 and 5×5 convolutions. One can see
the number of 1×1 filters in the projection layer after the
built-in max-pooling in the pool proj column. All these re-
duction/projection layers use rectified linear activation as
well.

The network was designed with computational efficiency
and practicality in mind, so that inference can be run on in-
dividual devices including even those with limited compu-
tational resources, especially with low-memory footprint.

• objects vary in scale so we should use multiple kernel sizes (1, 3, 5) in parallel

• outputs of the parallel layers are concatenated

• the number of feature maps are reduced with Fin × Fin/2× 1× 1 conv. to lower

computational load

Szegedy et al., “Going deeper with convolutions”, CVPR 2015. Image credits

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 23

https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf
https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202

ImageNet Classification (“GoogLeNet”) 2014

• 22 layer deep (27 including pooling layers)

• Use two “auxiliary classifiers” to middle layers to alleviate the

vanishing gradient problem

• Optimizes a weighted sum of “auxiliary errors” (α0 = 0.3 and

α1 = 0.3)

E = α0E0 + α1E1 + E2

Szegedy et al., “Going deeper with convolutions”, CVPR 2015. Image

credits

• A linear layer with softmax loss as the classifier (pre-
dicting the same 1000 classes as the main classifier, but
removed at inference time).

A schematic view of the resulting network is depicted in
Figure 3.

6. Training Methodology

GoogLeNet networks were trained using the DistBe-
lief [4] distributed machine learning system using mod-
est amount of model and data-parallelism. Although we
used a CPU based implementation only, a rough estimate
suggests that the GoogLeNet network could be trained to
convergence using few high-end GPUs within a week, the
main limitation being the memory usage. Our training used
asynchronous stochastic gradient descent with 0.9 momen-
tum [17], fixed learning rate schedule (decreasing the learn-
ing rate by 4% every 8 epochs). Polyak averaging [13] was
used to create the final model used at inference time.

Image sampling methods have changed substantially
over the months leading to the competition, and already
converged models were trained on with other options, some-
times in conjunction with changed hyperparameters, such
as dropout and the learning rate. Therefore, it is hard to
give a definitive guidance to the most effective single way
to train these networks. To complicate matters further, some
of the models were mainly trained on smaller relative crops,
others on larger ones, inspired by [8]. Still, one prescrip-
tion that was verified to work very well after the competi-
tion, includes sampling of various sized patches of the im-
age whose size is distributed evenly between 8% and 100%
of the image area with aspect ratio constrained to the inter-
val [34 ,

4
3]. Also, we found that the photometric distortions

of Andrew Howard [8] were useful to combat overfitting to
the imaging conditions of training data.

7. ILSVRC 2014 Classification Challenge
Setup and Results

The ILSVRC 2014 classification challenge involves the
task of classifying the image into one of 1000 leaf-node cat-
egories in the Imagenet hierarchy. There are about 1.2 mil-
lion images for training, 50,000 for validation and 100,000
images for testing. Each image is associated with one
ground truth category, and performance is measured based
on the highest scoring classifier predictions. Two num-
bers are usually reported: the top-1 accuracy rate, which
compares the ground truth against the first predicted class,
and the top-5 error rate, which compares the ground truth
against the first 5 predicted classes: an image is deemed
correctly classified if the ground truth is among the top-5,
regardless of its rank in them. The challenge uses the top-5
error rate for ranking purposes.

input

Conv
7x7+2(S)

MaxPool
3x3+2(S)

LocalRespNorm

Conv
1x1+1(V)

Conv
3x3+1(S)

LocalRespNorm

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

AveragePool
5x5+3(V)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

MaxPool
3x3+2(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool
3x3+1(S)

DepthConcat

Conv
3x3+1(S)

Conv
5x5+1(S)

Conv
1x1+1(S)

AveragePool
7x7+1(V)

FC

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax0

Conv
1x1+1(S)

FC

FC

SoftmaxActivation

softmax1

SoftmaxActivation

softmax2

Figure 3: GoogLeNet network with all the bells and whistles.

E2

E1

E0

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 24

https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf
https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202
https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202

Simply stacking more layers?

Though it can be trained (with the help of Batch Norm),

56-layer net has higher training error and test error than 20-layer net!

He et al, “Deep Residual Learning for Image Recognition”, CVPR-2016.

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 25

http://arxiv.org/abs/1512.03385

Deep Residual Learning (“ResNets”)

identity

weight layer

weight layer

relu

relu

F(x) + x

x

F(x)
x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

A solution by construction:

• original layers: copied from a learned shallower model

• extra layers: set as identity

• at least the same training error

He et al, “Deep Residual Learning for Image Recognition”, CVPR-2016.

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 26

http://arxiv.org/abs/1512.03385

Deep Residual Learning (“ResNets”)

identity

weight layer

weight layer

relu

relu

F(x) + x

x

F(x)
x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

A solution by construction:

• original layers: copied from a learned shallower model

• extra layers: set as identity

• at least the same training error

He et al, “Deep Residual Learning for Image Recognition”, CVPR-2016.

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 26

http://arxiv.org/abs/1512.03385

Deep Residual Learning (“ResNets”)

identity

weight layer

weight layer

relu

relu

F(x) + x

x

F(x)
x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

A solution by construction:

• original layers: copied from a learned shallower model

• extra layers: set as identity

• at least the same training error

He et al, “Deep Residual Learning for Image Recognition”, CVPR-2016.
MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 26

http://arxiv.org/abs/1512.03385

Deep Residual Learning (“ResNets”)

identity

weight layer

weight layer

relu

relu

F(x) + x

x

F(x)
x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

A solution by construction:

• original layers: copied from a learned shallower model

• extra layers: set as identity

• at least the same training error

He et al, “Deep Residual Learning for Image Recognition”, CVPR-2016.
MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 26

http://arxiv.org/abs/1512.03385

Deep Residual Learning (“ResNets”)

He et al, “Deep Residual Learning for Image Recognition”, CVPR-2016.

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 27

http://arxiv.org/abs/1512.03385

Densely Connected CNNs (“DenseNets”)

C
onvolution

Pooling

Dense Block 1 C
onvolution

Pooling

Pooling

Linear

C
onvolution

Input
Prediction

“horse”
Dense Block 2 Dense Block 3

Figure 2: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change
feature-map sizes via convolution and pooling.

ResNets can improve its performance provided the depth is
sufficient [42]. FractalNets also achieve competitive results
on several datasets using a wide network structure [17].

Instead of drawing representational power from ex-
tremely deep or wide architectures, DenseNets exploit the
potential of the network through feature reuse, yielding con-
densed models that are easy to train and highly parameter-
efficient. Concatenating feature-maps learned by different
layers increases variation in the input of subsequent layers
and improves efficiency. This constitutes a major difference
between DenseNets and ResNets. Compared to Inception
networks [36, 37], which also concatenate features from dif-
ferent layers, DenseNets are simpler and more efficient.

There are other notable network architecture innovations
which have yielded competitive results. The Network in
Network (NIN) [22] structure includes micro multi-layer
perceptrons into the filters of convolutional layers to ex-
tract more complicated features. In Deeply Supervised Net-
work (DSN) [20], internal layers are directly supervised
by auxiliary classifiers, which can strengthen the gradients
received by earlier layers. Ladder Networks [27, 25] in-
troduce lateral connections into autoencoders, producing
impressive accuracies on semi-supervised learning tasks.
In [39], Deeply-Fused Nets (DFNs) were proposed to im-
prove information flow by combining intermediate layers
of different base networks. The augmentation of networks
with pathways that minimize reconstruction losses was also
shown to improve image classification models [43].

3. DenseNets
Consider a single image x0 that is passed through a con-

volutional network. The network comprises L layers, each
of which implements a non-linear transformation H`(·),
where ` indexes the layer. H`(·) can be a composite func-
tion of operations such as Batch Normalization (BN) [14],
rectified linear units (ReLU) [6], Pooling [19], or Convolu-
tion (Conv). We denote the output of the `th layer as x`.

ResNets. Traditional convolutional feed-forward net-
works connect the output of the `th layer as input to the
(` + 1)th layer [16], which gives rise to the following
layer transition: x` = H`(x`−1). ResNets [11] add a
skip-connection that bypasses the non-linear transforma-
tions with an identity function:

x` = H`(x`−1) + x`−1. (1)

An advantage of ResNets is that the gradient can flow di-
rectly through the identity function from later layers to the
earlier layers. However, the identity function and the output
of H` are combined by summation, which may impede the
information flow in the network.

Dense connectivity. To further improve the information
flow between layers we propose a different connectivity
pattern: we introduce direct connections from any layer
to all subsequent layers. Figure 1 illustrates the layout of
the resulting DenseNet schematically. Consequently, the
`th layer receives the feature-maps of all preceding layers,
x0, . . . ,x`−1, as input:

x` = H`([x0,x1, . . . ,x`−1]), (2)

where [x0,x1, . . . ,x`−1] refers to the concatenation of the
feature-maps produced in layers 0, . . . , `−1. Because of its
dense connectivity we refer to this network architecture as
Dense Convolutional Network (DenseNet). For ease of im-
plementation, we concatenate the multiple inputs of H`(·)
in eq. (2) into a single tensor.

Composite function. Motivated by [12], we define H`(·)
as a composite function of three consecutive operations:
batch normalization (BN) [14], followed by a rectified lin-
ear unit (ReLU) [6] and a 3× 3 convolution (Conv).

Pooling layers. The concatenation operation used in
Eq. (2) is not viable when the size of feature-maps changes.
However, an essential part of convolutional networks is
down-sampling layers that change the size of feature-maps.
To facilitate down-sampling in our architecture we divide
the network into multiple densely connected dense blocks;
see Figure 2. We refer to layers between blocks as transition
layers, which do convolution and pooling. The transition
layers used in our experiments consist of a batch normal-
ization layer and an 1×1 convolutional layer followed by a
2×2 average pooling layer.

Growth rate. If each function H` produces k feature-
maps, it follows that the `th layer has k0+k× (`−1) input
feature-maps, where k0 is the number of channels in the in-
put layer. An important difference between DenseNet and
existing network architectures is that DenseNet can have
very narrow layers, e.g., k = 12. We refer to the hyper-
parameter k as the growth rate of the network. We show in
Section 4 that a relatively small growth rate is sufficient to

• Connect all layers with each other: each layer obtains additional inputs from all

preceding layers and passes on its own feature-maps to all subsequent layers

• Requires L(L + 1)/2 connections in a L-layer network

• Instead uses dense connections within “dense blocks”

• Requires fewer parameters per layer than traditional CNNs, as there is no need to

re-learn redundant feature-map

Huang et al, “Densely Connected Convolutional Networks”, CVPR-2017.

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 28

https://arxiv.org/abs/1608.06993

Summary

• Convolutional networks include local receptive fields, weight sharing, and pooling

leading

• Backprop training can also be implemented as a “reverse”convolutional layer

(with the weight matrix rotated)

• Implement using 4D tensors:

• Inputs / Layer values: minibatch-size, number-fmaps, x, y

• Weights: Fin, Fout, x, y

• Arguments: stride, kernel size, dilation, filter groups

• Reading:

Goodfellow et al, Deep Learning (ch 9)

http://www.deeplearningbook.org/contents/convnets.html

MLP Lecture 8 / 29 October / 5 November 2019 Convolutional Networks 2: Training, deep convolutional networks 29

http://www.deeplearningbook.org/contents/convnets.html

