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Recap: Vanishing/exploding gradients

• z(1) = W (1)x , h(1) = f (z(1)) and y = h(L)

• Assuming f is identity mapping, y = W (L)W (L−1) . . .W (2)W (1)x

• W (l) =

[
2 0

0 2

]
→ y = W (L)

[
2 0

0 2

]L−1

x (Exploding gradients)

• W (l) =

[
.5 0

0 .5

]
→ y = W (L)

[
.5 0

0 .5

]L−1

x (Vanishing gradients)

MLP Lecture 6 / 22 October 2019 Initialisation, Normalisation, Dropout 2



Recap: Vanishing/exploding gradients

• z(1) = W (1)x , h(1) = f (z(1)) and y = h(L)

• Assuming f is identity mapping, y = W (L)W (L−1) . . .W (2)W (1)x

• W (l) =

[
2 0

0 2

]
→ y = W (L)

[
2 0

0 2

]L−1

x (Exploding gradients)

• W (l) =

[
.5 0

0 .5

]
→ y = W (L)

[
.5 0

0 .5

]L−1

x (Vanishing gradients)

MLP Lecture 6 / 22 October 2019 Initialisation, Normalisation, Dropout 2



Recap: Vanishing/exploding gradients

• z(1) = W (1)x , h(1) = f (z(1)) and y = h(L)

• Assuming f is identity mapping, y = W (L)W (L−1) . . .W (2)W (1)x

• W (l) =

[
2 0

0 2

]
→ y = W (L)

[
2 0

0 2

]L−1

x (Exploding gradients)

• W (l) =

[
.5 0

0 .5

]
→ y = W (L)

[
.5 0

0 .5

]L−1

x (Vanishing gradients)

MLP Lecture 6 / 22 October 2019 Initialisation, Normalisation, Dropout 2



Random weight initialisation

• Initialise weights to small random numbers r , sampling weights independently
from a Gaussian or from a uniform distribution

• control the initialisation by setting the mean (typically to 0) and variance of the

weight distribution

• Biases may be initialised to 0

• output (softmax) biases can be normalised to log(p(c)), log of prior probability of

the corresponding class c
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Setting Var(w)

Consider a linear unit:

y =

nin∑

i=1

wixi

if w and x are zero-mean and iid (independent and identically distributed), then

Var(y) = Var(

nin∑

i=1

wixi ) = nin Var(x) Var(w)

So, if we want variance of inputs x and outputs y to be the same, set

Var(wi ) =
1

nin

Nicely explained at http://andyljones.tumblr.com/post/110998971763/

an-explanation-of-xavier-initialization
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“GlorotInit” (“Xavier initialisation”)

We would like to set the variance of each layer to be 1/nin, thus

• Uniform distribution: wi ∼ U(−
√

3/nin,
√

3/nin). Hint x ∼ U(a, b), then

Var(x) = (b − a)2/12.

• However we need to take the backprop into account, hence we would also like

Var(wi ) = 1/nout

• As a compromise set the variance to be Var(wi ) = 2/(nin + nout)

• This corresponds to Glorot and Bengio’s normalised initialisation

wi ∼ U
(
−
√

6/(nin + nout),
√

6/(nin + nout)
)

• For Normal distribution: wi ∼ N (0,
√

1/nin) and wi ∼ N
(

0,
√

2/(nin + nout)
)

.

Glorot & Bengio, “Understanding the difficulty of training deep feedforward networks”, AISTATS, 2010.

http://www.jmlr.org/proceedings/papers/v9/glorot10a.html
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Feature Normalisation
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Data Preprocessing – Normalization

4 2 0 2 4
x1

4

2

0

2

4

x 2

original data

• Mean substraction: x̂i = xi −mean(X train)

• Normalisation: x̃i = x̂i/std(X train)

• We also need to normalise test set with the train set mean and std
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Data Preprocessing – PCA and Whitening
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original data
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x 2

decorrelated data

4 2 0 2 4
x1

4

2

0

2

4

x 2

whitened data

PCA (Principal Components Analysis)

• Decorrelate the data by projecting onto the principal components.

• Also possible to reduce dimensionality by only projecting onto the top P principal components.

Whitening: PCA + Scale each dimension
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Why is whitening useful?

𝑤1

𝑤2

𝑤1

𝑤2

Error for unnormalised data Error for normalised data

Normalising input can result in faster training by enabling training with higher learning

rates.
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Batch Normalisation

Output

Hidden

Input

h = f(Wx + b)

x

Ioffe & Szegedy, “Batch normalization”, ICML-2015

http://www.jmlr.org/proceedings/papers/v37/ioffe15.html
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Batch Normalisation

Output

Hidden

Input

Batch
Normalisation

zi = batchNorm(wix)

hi = f(zi)

Ioffe & Szegedy, “Batch normalization”, ICML-2015

http://www.jmlr.org/proceedings/papers/v37/ioffe15.html
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Batch Normalisation

Output

Hidden

Input

Batch
Normalisation

zi = batchNorm(wix)

hi = f(zi)

ui = wix

ûi =
ui � µip
�2

i + ✏

zi = �iûi + �i = batchNorm(ui)

Normalise hidden 
unit activations , 

then scale and shift

Ioffe & Szegedy, “Batch normalization”, ICML-2015

http://www.jmlr.org/proceedings/papers/v37/ioffe15.html
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Batch Normalisation

Output

Hidden

Input

Batch
Normalisation

zi = batchNorm(wix)

hi = f(zi)

ui = wix

ûi =
ui � µip
�2

i + ✏

zi = �iûi + �i = batchNorm(ui)

µi  
1

M

MX

m=1

um
i

�2
i  

1

M

MX

m=1

(um
i � µi)

2

Compute mean and 
variance of each hidden 

unit activation across 
the minibatch (size M)

Ioffe & Szegedy, “Batch normalization”, ICML-2015

http://www.jmlr.org/proceedings/papers/v37/ioffe15.html
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Computational graph for batch normalisation

https://kratzert.github.io/2016/02/12/

understanding-the-gradient-flow-through-the-batch-normalization-layer.

html
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Batch normalisation

• Use minibatch statistics to normalise activations of each layer (activations are the

argument of the transfer function)

• Parameters γ and β can scale and shift the normalised activations; β can also play

the role of bias

• batchNorm depends on the current training example – and on examples in the

minibatch (to compute mean and variance)
• Training

• Set parameters γ and β by gradient descent – require gradients ∂E
∂γ and ∂E

∂β

• To back-propagate gradients through the batchNorm layer also require: ∂E
∂û

∂E
∂σ2

∂E
∂µ

∂E
∂ui

• Runtime - use the sample mean and variance computed over the complete training

data as the mean and variance parameters for each layer – fixed transform:

ûi =
ui −mean(ui )√

Var(ui ) + ε
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Batch normalisation – gradients (for reference)

∂E

∂ûmi
=
∂Em

∂zmi
· γi

∂E

∂σ2
i

=
∑

m

∂Em

∂ûmi
· (umi − µi ) ·

−1

2

(
σ2
i + ε

)−3/2

∂E

∂µi
=

(∑

m

∂Em

∂ûmi
· −1√

σ2
i + ε

)
+
∂E

∂σ2
i

· 1

M

∑

m

−2(ui − µi )

∂E

∂umi
=
∂Em

∂ûmi
· 1√

σ2
i + ε

+
∂E

∂σ2
i

· 2(ui − µi )

M
+
∂E

∂µi
· 1

M

∂E

∂γi
=
∑

m

∂Em

∂zmi
· ûmi

∂E

∂βi
=
∑

m

∂Em

∂zmi

see also http://cthorey.github.io/backpropagation/
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Benefits of batch normalisation

• Makes training many-layered networks easier

• Allows higher learning rates

• Weight initialisation less crucial

• Can act like a regulariser – maybe reduces need for techniques like dropout

• Can be applied to convolutional networks

• In practice (image processing) – achieves similar accuracy with many fewer

training cycles

• Very widely used, and very useful for many-layered networks (e.g. visual object

recognition)
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Dropout



Dropout

• Dropout is a way of training networks to behave so that they have the behaviour

of an average of multiple networks

• Dropout training:

• Each mini-batch randomly delete a fraction of the hidden units (inclusion probability

p ∼ 0.5) and the input units (p ∼ 0.8) – and their related weights and biases

• Then process the mini-batch (forward and backward) using this modified network,

and update the weights

• Restore the deleted units/weights, choose a new random subset of hidden units to

delete and repeat the process
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Dropout Training - Complete Network

Output

Hidden

Input
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Dropout Training - First Minibatch

Output

Hidden

Input

p = 0.5
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Dropout Training - First Minibatch

Output

Hidden

Input

p = 0.5
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Dropout Training - Second Minibatch

Output

Hidden

Input

p = 0.5
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Dropout Training - Second Minibatch

Output

Hidden

Input

p = 0.5
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Dropout

• Dropout is a way of training networks to behave so that they have the behaviour

of an average of multiple networks

• Dropout training:

• Each mini-batch randomly delete a fraction of the hidden units (inclusion probability

p ∼ 0.5) and the input units (p ∼ 0.8) – and their related weights and biases

• Then process the mini-batch (forward and backward) using this modified network,

and update the weights

• Restore the deleted units/weights, choose a new random subset of hidden units to

delete and repeat the process

• To compensate for missing units, use “inverted dropout”: scale by 1/p when

training, no scaling in final network.
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Why does Dropout work?

• Each mini-batch is like training a different network, since we randomly select to

dropout (remove) a fraction of the units

• So we can imagine dropout as combining an exponential number of networks

• Since the component networks will be complementary and overfit in different

ways, dropout is implicit model combination

• Also interpret dropout as training more robust hidden unit features – each hidden

unit cannot rely on all other hidden unit features being present, must be robust to

missing features

• Dropout has been useful in improving the generalisation of large-scale deep

networks
• Annealed Dropout: Dropout rate schedule starting with a fraction p units

dropped, decreasing at a constant rate to 0
• Initially training with dropout

• Eventually fine-tune all weights together
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Lab 6: 06 Dropout and Maxout

Lab 6 explores dropout:

• Implementing a Dropout Layer

• Training models with dropout layers to classify MNIST digits

The lab also explores another non-linear transformation, Maxout, which can be

thought of as a generalisation of ReLU

• Implementing Maxout using a Max Pooling Layer

• Training models with maxout layers to classify MNIST digits
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Summary

• Initialisation – how to intitialise the weights, independent of network size

• Batch normalisation – normalise activations of each layer

• Dropout – train networks so they behave as an average of multiple networks

• Additional material: Layer-by-layer Pretraining and Autoencoders

• For many tasks (e.g. MNIST) pre-training seems to be necessary / useful for

training deep networks

• For some tasks with very large sets of training data (e.g. speech recognition)

pre-training may not be necessary

• (Can also pre-train using stacked restricted Boltzmann machines)
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Mid-semester survey

Please take 5 minutes to complete the mid-semester survey

https://edinburgh.onlinesurveys.ac.uk/

machine-learning-practical-201920-semester-1-mid-semes

Link is also at top of the course homepage

https://edinburgh.onlinesurveys.ac.uk/machine-learning-practical-201920-semester-1-mid-semes
https://edinburgh.onlinesurveys.ac.uk/machine-learning-practical-201920-semester-1-mid-semes


Reading

• Michael Nielsen, chapter 5 of Neural Networks and Deep Learning

http://neuralnetworksanddeeplearning.com/chap5.html

• Goodfellow et al, sections 7.12, 8.4, 8.7.1, chapter 14
• Additional reading:

• Srivastava et al, “Dropout: a simple way to prevent neural networks from

overfitting”, JMLR, 15(1), 1929-1958, 2014.

http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

• Glorot and Bengio, “Understanding the difficulty of training deep feedforward

networks”, AISTATS-2010.

http://www.jmlr.org/proceedings/papers/v9/glorot10a.html

• Ioffe and Szegedy, “Batch normalization”, ICML-2015.

http://www.jmlr.org/proceedings/papers/v37/ioffe15.html

• Kratzert, “Understanding the backward pass through Batch Normalization Layer”.

https://kratzert.github.io/2016/02/12/

understanding-the-gradient-flow-through-the-batch-normalization-layer.

html
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Additional Material
Pretraining and Autoencoders
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Pretraining

Why is training deep networks hard?

• Vanishing (or exploding) gradients – gradients for layers closer to the input layer are computed

multiplicatively using backprop

• If sigmoid/tanh hidden units near the output saturate then back-propagated gradients will be very small

• Good discussion in chapter 5 of Neural Networks and Deep Learning
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• Vanishing (or exploding) gradients – gradients for layers closer to the input layer are computed

multiplicatively using backprop

• If sigmoid/tanh hidden units near the output saturate then back-propagated gradients will be very small

• Good discussion in chapter 5 of Neural Networks and Deep Learning

Solve by stacked pretraining

• Train the first hidden layer

• Add a new hidden layer, and train only the parameters relating to the new hidden layer. Repeat.

• The use the pretrained weights to initialise the network – emphfine-tune the complete network using

gradient descent
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Pretraining

Why is training deep networks hard?

• Vanishing (or exploding) gradients – gradients for layers closer to the input layer are computed

multiplicatively using backprop

• If sigmoid/tanh hidden units near the output saturate then back-propagated gradients will be very small

• Good discussion in chapter 5 of Neural Networks and Deep Learning

Solve by stacked pretraining

• Train the first hidden layer

• Add a new hidden layer, and train only the parameters relating to the new hidden layer. Repeat.

• The use the pretrained weights to initialise the network – emphfine-tune the complete network using

gradient descent

Approaches to pre-training

• Supervised: Layer-by-layer cross-entropy training

• Unsupervised: Autoencoders

• Unsupervised: Restricted Boltzmann machines (not covered in this course)
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Greedy Layer-by-layer cross-entropy training

1. Train a network with one hidden layer

2. Remove the output layer and weights leading to the output layer

3. Add an additional hidden layer and train only the newly added weights

4. Goto 2 or finetune & stop if deep enough
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Autoencoders

• An autoencoder is a neural network trained to map its input into a distributed

representation from which the input can be reconstructed

• Example: single hidden layer network, with an output the same dimension as the

input, trained to reproduce the input using squared error cost function

….

….

….
y:  d dimension outputs

x:  d dimension inputs

learned representation

E = �1

2
||y � x||2
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Stacked autoencoders

• Can the hidden layer just copy the input (if it has an equal or higher dimension)?

• In practice experiments show that nonlinear autoencoders trained with stochastic

gradient descent result in useful hidden representations

• Early stopping acts as a regulariser

• Stacked autoencoders – train a sequence of autoencoders, layer-by-layer

• First train a single hidden layer autoencoder

• Then use the learned hidden layer as the input to a new autoencoder
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Stacked Autoencoders

….

….

….

….

….

…. ….

….

….

Input

Hidden 1

Hidden 2

Hidden 3
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Pretraining using Stacked autoencoder

….

….

….

….

Input

Hidden 1

Hidden 2

Hidden 3

Initialise hidden layers
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Pretraining using Stacked autoencoder

….

….

….

….

Input

Hidden 1

Hidden 2

Hidden 3

…. Output

Train output layer
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Pretraining using Stacked autoencoder

….

….

….

….

Input

Hidden 1

Hidden 2

Hidden 3

…. Output

Fine tune whole network
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Denoising Autoencoders

• Basic idea: Map a corrupted input to a clean output

• Forces the learned representation to be stable and robust to noise and variations

in the input

• To perform the denoising task well requires a representation which models the

important structure in the input

• The aim is to learn a representation that is robust to noise, not to perform the

denoising mapping as well as possible

• Noise in the input:

• Random Gaussian noise added to each input vector

• Masking – randomly setting some components of the input vector to 0

• “Salt & Pepper” – randomly setting some components of the input vector to 0 and

others to 1

• Stacked denoising autoencoders – noise is only applied to the input vectors, not to

the learned representations
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Denoising Autoencoder

….

….

….
y:  d dimension outputs

x:  d dimension inputs
(clean)

learned representation

E = �1

2
||y � x||2

x’:  d dimension inputs
(noisy)

….
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Lab 7: 07 Autoencoders

Lab 7 explores autoencoders and pretraining:

• Implementing a linear autoencoder

• Implementing a non-linear autoencoder

• Denoising autoencoders

• Using an autoencoder as an initialisation for supervised training
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