
Deep Neural Networks (3)

Computational Graphs, Learning Algorithms, Initialisation

Hakan Bilen

Machine Learning Practical — MLP Lecture 5

15 October 2019

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 1

Computational Graphs

Computational graphs

• Each node is an operation

• Data flows between nodes (scalars, vectors, matrices, tensors)

• More complex operations can be formed by composing simpler operations

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 2

Computational graph example 1

x

x y

z

Graph for × to compute z = xy

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 3

Computational graph example 2

dot +

sigmoid

bwx

y

Graph for logistic regression:

y = sigmoid(wᵀx + b)

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 4

Computational graph example 3

matmul +

relu

X W b

H

Graph for ReLU layer:

H = relu(WX + b)

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 5

Computational graphs and back-propagation

f(x,y)

x y

z

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 6

Computational graphs and back-propagation

f

x y

z = f(x,y) dE/dz

f’

dE

dx
=

dE

dz

dz

dx

dE

dy
=

dE

dz

dz

dy

Chain rule of differentiation as the backward pass through the computational graph

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 6

Computational graphs

• Each node is an operation

• Data flows between nodes (scalars, vectors, matrices, tensors)

• More complex operations can be formed by composing simpler operations

• Implement chain rule of differentiation as a backward pass through the graph

• Back-propagation: Multiply the local gradient of an operation with an incoming

gradient (or sum of gradients)

• See http://colah.github.io/posts/2015-08-Backprop/

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 7

http://colah.github.io/posts/2015-08-Backprop/

How to set
the learning rate?

Weight Updates

• Let di (t) = ∂E/∂wi (t) be the gradient of the error function E with respect to a

weight wi at update time t

• “Vanilla” gradient descent updates the weight along the negative gradient

direction:

∆wi (t) = −ηdi (t)

wi (t + 1) = wi (t) + ∆wi (t)

Hyperparameter η - learning rate

• Initialise η, and update as the training progresses (learning rate schedule)

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 8

Learning Rate Schedules

• Proofs of convergence for stochastic optimisation rely on a learning rate that

reduces through time (as 1/t) - Robbins and Munro (1951)

• Learning rate schedule – typically initial larger steps followed by smaller steps for

fine tuning: Results in faster convergence and better solutions

• Time-dependent schedules

∆wi (t) = −η(t)di (t)

• Piecewise constant: pre-determined η for each epoch

• Exponential: η(t) = η(0) exp(−t/r) (r ∼ training set size)

• Reciprocal: η(t) = η(0)(1 + t/r)−c (c ∼ 1)

• Performance-dependent η – e.g. “NewBOB”: fixed η until validation set stops

improving, then halve η each epoch (i.e. constant, then exponential)

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 9

Learning Rate Schedules

• Proofs of convergence for stochastic optimisation rely on a learning rate that

reduces through time (as 1/t) - Robbins and Munro (1951)

• Learning rate schedule – typically initial larger steps followed by smaller steps for

fine tuning: Results in faster convergence and better solutions

• Time-dependent schedules

∆wi (t) = −η(t)di (t)

• Piecewise constant: pre-determined η for each epoch

• Exponential: η(t) = η(0) exp(−t/r) (r ∼ training set size)

• Reciprocal: η(t) = η(0)(1 + t/r)−c (c ∼ 1)

• Performance-dependent η – e.g. “NewBOB”: fixed η until validation set stops

improving, then halve η each epoch (i.e. constant, then exponential)

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 9

Learning Rate Schedules

• Proofs of convergence for stochastic optimisation rely on a learning rate that

reduces through time (as 1/t) - Robbins and Munro (1951)

• Learning rate schedule – typically initial larger steps followed by smaller steps for

fine tuning: Results in faster convergence and better solutions

• Time-dependent schedules

∆wi (t) = −η(t)di (t)

• Piecewise constant: pre-determined η for each epoch

• Exponential: η(t) = η(0) exp(−t/r) (r ∼ training set size)

• Reciprocal: η(t) = η(0)(1 + t/r)−c (c ∼ 1)

• Performance-dependent η – e.g. “NewBOB”: fixed η until validation set stops

improving, then halve η each epoch (i.e. constant, then exponential)

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 9

Training with Momentum

∆wi (t) = −ηdi (t) + α∆wi (t − 1)

• α ∼ 0.9 is the momentum hyperparameter

• Weight changes start by following the gradient

• After a few updates they start to have velocity – no

longer pure gradient descent

• Momentum term encourages the weight change to

go in the previous direction

• Damps the random directions of the gradients, to

encourage weight changes in a consistent direction

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 10

Adaptive Learning Rates

• Tuning learning rate (and momentum) parameters can be expensive

(hyperparameter grid search) – it works, but we can do better

• Adaptive learning rates and per-weight learning rates

• AdaGrad – normalise the update for each weight

• RMSProp – AdaGrad forces the learning rate to always decrease, this constraint is

relaxed with RMSProp

• Adam – “RMSProp with momentum”

Well-explained by Andrej Karpathy at

http://cs231n.github.io/neural-networks-3/

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 11

http://cs231n.github.io/neural-networks-3/

AdaGrad

• Separate, normalised update for each weight

• Normalised by the sum squared gradient S

Si (0) = 0

Si (t) = Si (t − 1) + di (t)2

∆wi (t) =
−η√

Si (t) + ε
di (t)

ε ∼ 10−8 is a small constant to prevent division by 0 errors

• The update step for a parameter wi is normalised by the (square root of) the sum
squared gradients for that parameter

• Weights with larger gradient magnitudes will have smaller effective learning rates

• Si cannot get smaller, so the effective learning rates monotonically decrease

• AdaGrad can decrease the effective learning rate too aggressively in deep networks

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 12

AdaGrad

• Separate, normalised update for each weight

• Normalised by the sum squared gradient S

Si (0) = 0

Si (t) = Si (t − 1) + di (t)2

∆wi (t) =
−η√

Si (t) + ε di (t)

ε ∼ 10−8 is a small constant to prevent division by 0 errors

• The update step for a parameter wi is normalised by the (square root of) the sum
squared gradients for that parameter

• Weights with larger gradient magnitudes will have smaller effective learning rates

• Si cannot get smaller, so the effective learning rates monotonically decrease

• AdaGrad can decrease the effective learning rate too aggressively in deep networks
MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 12

AdaGrad

• Separate, normalised update for each weight

• Normalised by the sum squared gradient S

Si (0) = 0

Si (t) = Si (t − 1) + di (t)2

∆wi (t) =
−η√

Si (t) + ε di (t)

ε ∼ 10−8 is a small constant to prevent division by 0 errors

• The update step for a parameter wi is normalised by the (square root of) the sum
squared gradients for that parameter

• Weights with larger gradient magnitudes will have smaller effective learning rates

• Si cannot get smaller, so the effective learning rates monotonically decrease

• AdaGrad can decrease the effective learning rate too aggressively in deep networks
Duchi et al, http://jmlr.org/papers/v12/duchi11a.html

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 12

http://jmlr.org/papers/v12/duchi11a.html

RMSProp

• RProp (Riedmiller & Braun, http://dx.doi.org/10.1109/ICNN.1993.298623) is a

method for batch gradient descent with an adaptive learning rate for each

parameter, and uses only the sign of the gradient (which is equivalent to

normalising by the gradient)

• RMSProp can be viewed as a stochastic gradient descent version of RProp

normalised by a moving average of the squared gradient (Hinton, http:

//www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf) –

similar to AdaGrad, but replacing the sum by a moving average for S :

Si (t) = βSi (t − 1) + (1− β) di (t)2

∆wi (t) =
−η√

Si (t) + ε
di (t)

β ∼ 0.9 is the decay rate

• Effective learning rates no longer guaranteed to decrease

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 13

http://dx.doi.org/10.1109/ICNN.1993.298623
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

RMSProp

• RProp (Riedmiller & Braun, http://dx.doi.org/10.1109/ICNN.1993.298623) is a

method for batch gradient descent with an adaptive learning rate for each

parameter, and uses only the sign of the gradient (which is equivalent to

normalising by the gradient)

• RMSProp can be viewed as a stochastic gradient descent version of RProp

normalised by a moving average of the squared gradient (Hinton, http:

//www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf) –

similar to AdaGrad, but replacing the sum by a moving average for S :

Si (t) = βSi (t − 1) + (1− β) di (t)2

∆wi (t) =
−η√

Si (t) + ε di (t)

β ∼ 0.9 is the decay rate

• Effective learning rates no longer guaranteed to decrease
MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 13

http://dx.doi.org/10.1109/ICNN.1993.298623
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Adam

• Hinton commented about RMSProp: “Momentum does not help as much as it

normally does”

• Adam (Kingma & Ba, https://arxiv.org/abs/1412.6980) can be viewed as

addressing this – it is a variant of RMSProp with momentum: Here a

momentum-smoothed gradient is used for the update in place of the gradient.

Kingma and Ba recommend α ∼ 0.9, β ∼ 0.999

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 14

https://arxiv.org/abs/1412.6980

Adam

• Hinton commented about RMSProp: “Momentum does not help as much as it

normally does”

• Adam (Kingma & Ba, https://arxiv.org/abs/1412.6980) can be viewed as

addressing this – it is a variant of RMSProp with momentum:

Mi (t) = αMi (t − 1) + (1− α)di (t)

Si (t) = βSi (t − 1) + (1− β)di (t)2

∆wi (t) =
−η√

Si (t) + ε
Mi (t)

Here a momentum-smoothed gradient is used for the update in place of the

gradient. Kingma and Ba recommend α ∼ 0.9, β ∼ 0.999

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 14

https://arxiv.org/abs/1412.6980

Adam

• Hinton commented about RMSProp: “Momentum does not help as much as it

normally does”

• Adam (Kingma & Ba, https://arxiv.org/abs/1412.6980) can be viewed as

addressing this – it is a variant of RMSProp with momentum:

Mi (t) = αMi (t − 1) + (1− α)di (t)

Si (t) = βSi (t − 1) + (1− β)di (t)2

∆wi (t) =
−η√

Si (t) + ε
Mi (t)

Here a momentum-smoothed gradient is used for the update in place of the

gradient. Kingma and Ba recommend α ∼ 0.9, β ∼ 0.999

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 14

https://arxiv.org/abs/1412.6980

Adam

• Hinton commented about RMSProp: “Momentum does not help as much as it

normally does”

• Adam (Kingma & Ba, https://arxiv.org/abs/1412.6980) can be viewed as

addressing this – it is a variant of RMSProp with momentum:

Mi (t) = αMi (t − 1) + (1− α)di (t)

Si (t) = βSi (t − 1) + (1− β)di (t)2

∆wi (t) =
−η√

Si (t) + ε
Mi (t)

Here a momentum-smoothed gradient is used for the update in place of the

gradient. Kingma and Ba recommend α ∼ 0.9, β ∼ 0.999

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 14

https://arxiv.org/abs/1412.6980

Adam

• Hinton commented about RMSProp: “Momentum does not help as much as it

normally does”

• Adam (Kingma & Ba, https://arxiv.org/abs/1412.6980) can be viewed as

addressing this – it is a variant of RMSProp with momentum:

Mi (t) = αMi (t − 1) + (1− α)di (t)

Si (t) = βSi (t − 1) + (1− β)di (t)2

∆wi (t) =
−η√

Si (t) + ε
Mi (t)

Here a momentum-smoothed gradient is used for the update in place of the

gradient. Kingman and Ba recommend α ∼ 0.9, β ∼ 0.999

Many hyperparameters:
batch-size, learning-rate, momentum,

learning-decay-rate, num-layers, num-units, …..

How to set them?

https://arxiv.org/abs/1412.6980

Coursework 1

http://www.inf.ed.ac.uk/teaching/courses/mlp/coursework-2019.html

• Build a baseline using the EMNIST dataset

• Implement/compare various activation functions

• Explore different multi-layer network architectures

Main aims of the coursework

• Implement recent activation functions in Python, carry out experiments to address

research questions

• Write a clear, concise, correct report that includes

• What you did

• Why you did it

• and provides an interpretation of your results, and some conclusions

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 15

http://www.inf.ed.ac.uk/teaching/courses/mlp/coursework-2019.html

Coursework 1

http://www.inf.ed.ac.uk/teaching/courses/mlp/coursework-2019.html

• Build a baseline using the EMNIST dataset

• Implement/compare various activation functions

• Explore different multi-layer network architectures

Main aims of the coursework

• Implement recent activation functions in Python, carry out experiments to address

research questions

• Write a clear, concise, correct report that includes

• What you did

• Why you did it

• and provides an interpretation of your results, and some conclusions

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 15

http://www.inf.ed.ac.uk/teaching/courses/mlp/coursework-2019.html

Vanishing/exploding gradients

• z(1) = W (1)x , h(1) = f (z(1)) and y = h(L)

• Assuming f is identity mapping, y = W (L)W (L−1) . . .W (2)W (1)x

• W (l) =

[
2 0

0 2

]
→ y = W (L)

[
2 0

0 2

]L−2

W (1)x

• W (l) =

[
0.5 0

0 0.5

]
→ y = W (L)

[
0.5 0

0 0.5

]L−2

W (1)x

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 16

Vanishing/exploding gradients

• z(1) = W (1)x , h(1) = f (z(1)) and y = h(L)

• Assuming f is identity mapping, y = W (L)W (L−1) . . .W (2)W (1)x

• W (l) =

[
2 0

0 2

]
→ y = W (L)

[
2 0

0 2

]L−2

W (1)x

• W (l) =

[
0.5 0

0 0.5

]
→ y = W (L)

[
0.5 0

0 0.5

]L−2

W (1)x

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 16

Vanishing/exploding gradients

• z(1) = W (1)x , h(1) = f (z(1)) and y = h(L)

• Assuming f is identity mapping, y = W (L)W (L−1) . . .W (2)W (1)x

• W (l) =

[
2 0

0 2

]
→ y = W (L)

[
2 0

0 2

]L−2

W (1)x

• W (l) =

[
0.5 0

0 0.5

]
→ y = W (L)

[
0.5 0

0 0.5

]L−2

W (1)x

MLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 16

Is it a good idea

to initialize weights with zero?

Summary

• Computational graphs

• Learning rate schedules and gradient descent algorithms

• Initialising the weights
• Reading

• Goodfellow et al, sections 6.5, 8.3, 8.5

• Olah, “Calculus on Computational Graphs: Backpropagation”,

http://colah.github.io/posts/2015-08-Backprop/

• Andrej Karpathy, CS231n notes (Stanford)

http://cs231n.github.io/neural-networks-3/

• Additional Reading
• Kingma and Ba, “Adam: A Method for Stochastic Optimization”, ICLR-2015

https://arxiv.org/abs/1412.6980

• Glorot and Bengio, “Understanding the difficulty of training deep feedforward

networks”, AISTATS-2010.

http://www.jmlr.org/proceedings/papers/v9/glorot10a.htmlMLP Lecture 5 / 15 October 2019 Deep Neural Networks (3) 17

http://colah.github.io/posts/2015-08-Backprop/
http://cs231n.github.io/neural-networks-3/
https://arxiv.org/abs/1412.6980
http://www.jmlr.org/proceedings/papers/v9/glorot10a.html

