
Deep Neural Networks (1)

Hidden layers; Back-propagation

Hakan Bilen

Machine Learning Practical — MLP Lecture 3

1 October 2019

http://www.inf.ed.ac.uk/teaching/courses/mlp/

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 1

http://www.inf.ed.ac.uk/teaching/courses/mlp/

Recap: Softmax single layer network

+ + +

class 1 class 2 class 3

softmax

inputs

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 2

What Do

Neural Networks Do?

What Do

Single Layer

Neural Networks Do?

Single layer network

Single-layer network, 1 output, 2 inputs

+

x1 x2

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 3

Geometric interpretation

Single-layer network, 1 output, 2 inputs

w

� b

||w||

x1

x2

y(w;x) = 0

Bishop, sec 3.1
MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 4

Single layer network

Single-layer network, 3 outputs, 2 inputs

+

x1 x2

++

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 5

Example data (three classes)

−4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5
Data

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 6

Classification regions with single-layer network

−4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5
Plot of Decision regions

Single-layer networks are limited to linear classification boundaries

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 7

Single layer network trained on MNIST Digits

0
10 Outputs

784 Inputs

784x10 weight matrix

1 2 3 4 5 6 7 8 9

. . . .

28x28

Weights of each output unit define a “template” for the class

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 8

Hinton Diagrams

Visualise the weights for class k

. . . .
400 (20x20) inputs

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 9

Hinton diagram for single layer network trained on MNIST

• Weights for each class act as a “discriminative template”

• Inner product of class weights and input to measure closeness to each template

• Classify to the closest template (maximum value output)

0 1

2 3

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 10

Question

What are the pros and cons

of using a single-layer network

for MNIST classification?

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 11

Multi-Layer Networks

From templates to features

• Good classification needs to cope with the variability of real data: scale, skew,

rotation, translation, . . .

• Very difficult to do with a single template per class

• Could have multiple templates per task. . . this will work, but we can do better

Use features rather than templates

(images from: Nielsen, chapter 1)

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 12

From templates to features

• Good classification needs to cope with the variability of real data: scale, skew,

rotation, translation, . . .

• Very difficult to do with a single template per class

• Could have multiple templates per task. . . this will work, but we can do better

Use features rather than templates

(images from: Nielsen, chapter 1)

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 12

Incorporating features in neural network architecture

Layered processing: inputs - features - classification

0 1 2 3 4 5 6 7 8 9

. . . .

.

How to obtain features? - learning!

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 13

Incorporating features in neural network architecture

Layered processing: inputs - features - classification

0 1 2 3 4 5 6 7 8 9

. . . .

.

How to obtain features? - learning!

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 13

Incorporating features in neural network architecture

0 1 2 3 4 5 6 7 8 9

. . . .

.

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 14

Incorporating features in neural network architecture

0 1 2 3 4 5 6 7 8 9

. . . .

.

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 14

Incorporating features in neural network architecture

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 14

Multi-layer network

yk = softmax

(
H∑

r=1

w
(2)
kr h

(1)
r + bk

)
h
(1)
j = sigmoid

(
d∑

s=1

w
(1)
js xs + bj

)

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 15

Multi-layer network for MNIST

(image from: Michael Nielsen, Neural Networks and Deep Learning,

http://neuralnetworksanddeeplearning.com/chap1.html)

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 16

http://neuralnetworksanddeeplearning.com/chap1.html

Training multi-layer networks: Credit assignment

• Hidden units make training the weights more complicated, since the hidden units

affect the error function indirectly via all the outputs

• The credit assignment problem

• what is the “error” of a hidden unit?

• how important is input-hidden weight w
(1)
ji to output unit k?

• What is the gradient of the error with respect to each weight?

(How to compute grads wrt params?)

• Solution: back-propagation of error (backprop)

• Backprop enables the gradients to be computed. These gradients are used by

gradient descent to train the weights.

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 17

Training multi-layer networks: Credit assignment

• Hidden units make training the weights more complicated, since the hidden units

affect the error function indirectly via all the outputs

• The credit assignment problem

• what is the “error” of a hidden unit?

• how important is input-hidden weight w
(1)
ji to output unit k?

• What is the gradient of the error with respect to each weight?

(How to compute grads wrt params?)

• Solution: back-propagation of error (backprop)

• Backprop enables the gradients to be computed. These gradients are used by

gradient descent to train the weights.

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 17

Training multi-layer networks: Credit assignment

• Hidden units make training the weights more complicated, since the hidden units

affect the error function indirectly via all the outputs

• The credit assignment problem

• what is the “error” of a hidden unit?

• how important is input-hidden weight w
(1)
ji to output unit k?

• What is the gradient of the error with respect to each weight?

(How to compute grads wrt params?)

• Solution: back-propagation of error (backprop)

• Backprop enables the gradients to be computed. These gradients are used by

gradient descent to train the weights.

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 17

Training output weights

Outputs

Hidden units

xi

w(2)
1 j w(2)

ℓ j

w(1)
ji

yKy�y1

w(2)
K j

hj

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 18

Training output weights

Outputs

Hidden units

xi

w(2)
1 j w(2)

ℓ j

w(1)
ji

yKy�y1

w(2)
K j

hj

g
(2)
K

g
(2)
`g

(2)
1

@En

@w
(2)
kj

= g
(2)
k h

(1)
j

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 18

Training MLPs: Error function and required gradients

• Cross-entropy error function:

En = −
C∑

k=1

tnk ln ynk

• Required gradients (grads wrt params): ∂En

∂w
(2)
kj

∂En

∂w
(1)
ji

∂En

∂b
(2)
k

∂En

∂b
(1)
j

• Gradient for hidden-to-output weights similar to single-layer network:

∂En

∂w
(2)
kj

=
∂En

∂z
(2)
k

· ∂z
(2)
k

∂wkj
=

(
C∑

c=1

∂En

∂yc
· ∂yc

∂z
(2)
k

)
· ∂z

(2)
k

∂wkj

= (yk − tk)︸ ︷︷ ︸
g
(2)
k

h
(1)
j

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 19

Training MLPs: Error function and required gradients

• Cross-entropy error function:

En = −
C∑

k=1

tnk ln ynk

• Required gradients (grads wrt params): ∂En

∂w
(2)
kj

∂En

∂w
(1)
ji

∂En

∂b
(2)
k

∂En

∂b
(1)
j

• Gradient for hidden-to-output weights similar to single-layer network:

∂En

∂w
(2)
kj

︸ ︷︷ ︸
grads wrt params

=
∂En

∂z
(2)
k

· ∂z
(2)
k

∂wkj
=

(
C∑

c=1

∂En

∂yc
· ∂yc

∂z
(2)
k

)
· ∂z

(2)
k

∂wkj

= (yk − tk)︸ ︷︷ ︸
error.grad

h
(1)
j

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 19

Back-propagation of error: hidden unit error signal

Outputs

Hidden units

xi

w(2)
1 j w(2)

ℓ j

w(1)
ji

yKy�y1

w(2)
K j

hj

g
(1)
j =

 X

`

g
(2)
l w`j

!
hj(1 � hj)

g
(2)
1 g

(2)
` g

(2)
K

@En

@w
(1)
ji

= g
(1)
j xi

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 20

Training MLPs: Input-to-hidden weights

∂En

∂w
(1)
ji

=
∂En

∂z
(1)
j

︸ ︷︷ ︸
g
(1)
j

·
∂z

(1)
j

∂w
(1)
ji︸ ︷︷ ︸
xi

To compute g
(1)
j = ∂En/∂a

(1)
j , error signal for hidden unit j , sum over all output units’

contributions to g
(1)
j :

g
(1)
j =

K∑

c=1

∂En

∂z
(2)
c

· ∂z
(2)
c

∂z
(1)
j

=




K∑

c=1

g
(2)
c · ∂z

(2)
c

∂h
(1)
j


 ·

∂h
(1)
j

∂z
(1)
j

=

(
K∑

c=1

g
(2)
c w

(2)
cj

)
h
(1)
j (1 − h

(1)
j)

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 21

Training MLPs: Input-to-hidden weights

∂En

∂w
(1)
ji

︸ ︷︷ ︸
grads wrt params

=
∂En

∂z
(1)
j

︸ ︷︷ ︸
g
(1)
j

·
∂z

(1)
j

∂w
(1)
ji︸ ︷︷ ︸
xi

To compute g
(1)
j = ∂En/∂a

(1)
j , error signal for hidden unit j , sum over all output units’

contributions to g
(1)
j :

g
(1)
j =

K∑

c=1

∂En

∂z
(2)
c

· ∂z
(2)
c

∂z
(1)
j

=




K∑

c=1

g
(2)
c · ∂z

(2)
c

∂h
(1)
j


 ·

∂h
(1)
j

∂z
(1)
j

=

(
K∑

c=1

g
(2)
c w

(2)
cj

)

︸ ︷︷ ︸
AffineLayer.bprop

h
(1)
j (1 − h

(1)
j)

︸ ︷︷ ︸
SigmoidLayer.bprop

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 21

Training MLPs: Gradients

• grads wrt params:

∂En

∂w
(2)
kj

= (yk − tk) · h(1)j

∂En

∂w
(1)
ji

=

(
k∑

c=1

g
(2)
c w

(2)
cj

)
· h(1)j (1 − h

(1)
j) · xi

• Exercise: write down expressions for the gradients w.r.t. the biases

∂En

∂b
(2)
k

∂En

∂b
(1)
j

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 22

Training MLPs: Gradients

• grads wrt params:

∂En

∂w
(2)
kj

= (yk − tk)︸ ︷︷ ︸
CrossEntropySoftmaxError.grad

·h(1)j

∂En

∂w
(1)
ji

=

(
k∑

c=1

g
(2)
c w

(2)
cj

)

︸ ︷︷ ︸
AffineLayer.bprop

· h
(1)
j (1 − h

(1)
j)

︸ ︷︷ ︸
SigmoidLayer.bprop

·xi

• Exercise: write down expressions for the gradients w.r.t. the biases

∂En

∂b
(2)
k

∂En

∂b
(1)
j

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 22

Training MLPs: Gradients

• grads wrt params:

∂En

∂w
(2)
kj

= (yk − tk)︸ ︷︷ ︸
CrossEntropySoftmaxError.grad

·h(1)j

∂En

∂w
(1)
ji

=

(
k∑

c=1

g
(2)
c w

(2)
cj

)

︸ ︷︷ ︸
AffineLayer.bprop

· h
(1)
j (1 − h

(1)
j)

︸ ︷︷ ︸
SigmoidLayer.bprop

·xi

• Exercise: write down expressions for the gradients w.r.t. the biases

∂En

∂b
(2)
k

∂En

∂b
(1)
j

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 22

Back-propagation of error

• The back-propagation of error algorithm is summarised as follows:

1. Apply an input vectors from the training set, x, to the network and forward

propagate to obtain the output vector y

2. Using the target vector t compute the error E n

3. Evaluate the error gradients g
(2)
k for each output unit using error.grad

4. Evaluate the error gradients g
(1)
j for each hidden unit using AffineLayer.bprop

and SigmoidLayer.bprop

5. Evaluate the derivatives (grads wrt params) for each training pattern

• Back-propagation can be extended to multiple hidden layers, in each case

computing the g (`)s for the current layer as a weighted sum of the g (`+1)s of the

next layer

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 23

Training with multiple hidden layers

Outputs

g
(3)
1 g

(3)
` g

(3)
K

Hidden

Hidden

y1 y` yK

w
(3)
1k

w
(3)
`k

w
(3)
Kk

w
(2)
1j

w
(2)
kj

w
(2)
Hj

h
(2)
Hh

(2)
k

h
(2)
1

g
(2)
1 g

(2)
k

g
(2)
H

h
(1)
j

w
(1)
ji

g
(1)
j

xi
Inputs

g
(2)
k =

 X

m

g(3)
m wmk

!
h

(2)
k (1 � h

(2)
k)

@En

@w
(2)
kj

= g
(2)
k h

(1)
j

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 24

Training with multiple hidden layers

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 24

Training with multiple hidden layers

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 24

Are there alternatives
to Sigmoid Hidden Units?

Sigmoid function

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a

g(
a)

Logistic sigmoid activation function g(a) = 1/(1+exp(−a))

Sigmoid Hidden Units (SigmoidLayer)

• Compress unbounded inputs to (0,1), saturating high magnitudes to 1

• Interpretable as the probability of a feature defined by their weight vector

• Interpretable as the (normalised) firing rate of a neuron

However. . .

• Saturation causes gradients to approach 0

• If the output of a sigmoid unit is h, then the gradient is h(1 − h) which approaches 0

as h saturates to 0 or 1 – hence the gradients it multiplies into approach 0.

• Small gradients result in small parameter changes, so learning becomes slow

• Outputs are not centred at 0

• The output of a sigmoid layer will have mean> 0 – numerically undesirable.

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 25

Sigmoid Hidden Units (SigmoidLayer)

• Compress unbounded inputs to (0,1), saturating high magnitudes to 1

• Interpretable as the probability of a feature defined by their weight vector

• Interpretable as the (normalised) firing rate of a neuron

However. . .

• Saturation causes gradients to approach 0

• If the output of a sigmoid unit is h, then the gradient is h(1 − h) which approaches 0

as h saturates to 0 or 1 – hence the gradients it multiplies into approach 0.

• Small gradients result in small parameter changes, so learning becomes slow

• Outputs are not centred at 0

• The output of a sigmoid layer will have mean> 0 – numerically undesirable.

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 25

tanh

tanh(x) =
ex − e−x

ex + e−x

sigmoid(x) =
1 + tanh(x/2)

2

Derivative:

d

dx
tanh(x) = 1 − tanh2(x)

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 26

tanh hidden units (TanhLayer)

• tanh has same shape as sigmoid but

has output range ±1

• Results about approximation capability

using sigmoid layers also apply to tanh

layers

• Possible reason to prefer tanh over

sigmoid: allowing units to be positive

or negative allows gradient for weights

into a hidden unit to have a different

sign

• Saturation still a problem

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 27

tanh hidden units (TanhLayer)

• tanh has same shape as sigmoid but

has output range ±1

• Results about approximation capability

using sigmoid layers also apply to tanh

layers

• Possible reason to prefer tanh over

sigmoid: allowing units to be positive

or negative allows gradient for weights

into a hidden unit to have a different

sign

• Saturation still a problem

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 27

tanh hidden units (TanhLayer)

• tanh has same shape as sigmoid but

has output range ±1

• Results about approximation capability

using sigmoid layers also apply to tanh

layers

• Possible reason to prefer tanh over

sigmoid: allowing units to be positive

or negative allows gradient for weights

into a hidden unit to have a different

sign

• Saturation still a problem

Hidden

Hidden

h
(2)
H

h
(2)
kh

(2)
1

g
(2)
k

h
(1)
jh

(1)
1

h
(1)
H

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 27

tanh hidden units (TanhLayer)

• tanh has same shape as sigmoid but

has output range ±1

• Results about approximation capability

using sigmoid layers also apply to tanh

layers

• Possible reason to prefer tanh over

sigmoid: allowing units to be positive

or negative allows gradient for weights

into a hidden unit to have a different

sign

• Saturation still a problem

Hidden

Hidden

h
(2)
H

h
(2)
kh

(2)
1

g
(2)
k

h
(1)
jh

(1)
1

h
(1)
H

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 27

Rectified Linear Unit – ReLU

relu(x) = max(0, x)

Derivative:

d

dx
relu(x) =





0 if x ≤ 0

1 if x > 0

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 28

ReLU hidden units (ReluLayer)

• Similar approximation results to tanh and sigmoid hidden units

• Empirical results for speech and vision show consistent improvements using relu

over sigmoid or tanh

• Unlike tanh or sigmoid there is no positive saturation – saturation results in very

small derivatives (and hence slower learning)

• Negative input to relu results in zero gradient (and hence no learning)

• Relu is computationally efficient: max(0, x)

• Relu units can “die” (i.e. respond with 0 to everything)

• Relu units can be very sensitive to the learning rate

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 29

ReLU hidden units (ReluLayer)

• Similar approximation results to tanh and sigmoid hidden units

• Empirical results for speech and vision show consistent improvements using relu

over sigmoid or tanh

• Unlike tanh or sigmoid there is no positive saturation – saturation results in very

small derivatives (and hence slower learning)

• Negative input to relu results in zero gradient (and hence no learning)

• Relu is computationally efficient: max(0, x)

• Relu units can “die” (i.e. respond with 0 to everything)

• Relu units can be very sensitive to the learning rate

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 29

Lab 3: 03 Multiple layer models

Lab 3 covers how multiple layer networks are modelled in the mlp framework.

• Representing activation functions as layer, applied after a linear (affine) layer

• Stacking layers together to build multi-layer networks with non-linear activation

functions (e.g. sigmoid) for the hidden layer

• Using Layer.fprop methods to implement the forward propagation and and

Layer.bprop methods to implement back propagation to compute the gradients

• Training softmax models on MNIST

• Training deeper multi-layer networks on MNIST

• Using various non-linear activation functions for the hidden layer (sigmoid, tanh,

relu)

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 30

Summary

• Understanding what single-layer networks compute

• How multi-layer networks allow feature computation

• Training multi-layer networks using back-propagation of error

• Tanh and ReLU activation functions

• Multi-layer networks are also referred to as deep neural networks or

multi-layer perceptrons

• Reading:

• Nielsen, chapter 2

• Goodfellow, sections 6.3, 6.4, 6.5

• Bishop, sections 3.1, 3.2, and chapter 4

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 31

