Deep Neural Networks (1) Hidden layers; Back-propagation

Hakan Bilen

Machine Learning Practical — MLP Lecture 3 1 October 2019 http://www.inf.ed.ac.uk/teaching/courses/mlp/

Recap: Softmax single layer network

What Do

Neural Networks Do?

What Do Single Layer

Neural Networks Do?

Single-layer network, 1 output, 2 inputs

Single-layer network, 3 outputs, 2 inputs

Example data (three classes)

Classification regions with single-layer network

Plot of Decision regions

Single-layer networks are limited to linear classification boundaries

Single layer network trained on MNIST Digits

Weights of each output unit define a "template" for the class

Visualise the weights for class k

Hinton diagram for single layer network trained on MNIST

- Weights for each class act as a "discriminative template"
- Inner product of class weights and input to measure closeness to each template
- Classify to the closest template (maximum value output)

What are the pros and cons of using a single-layer network for MNIST classification?

Multi-Layer Networks

- Good classification needs to cope with the variability of real data: scale, skew, rotation, translation, ...
- Very difficult to do with a single template per class
- Could have multiple templates per task...this will work, but we can do better

- Good classification needs to cope with the variability of real data: scale, skew, rotation, translation, ...
- Very difficult to do with a single template per class
- Could have multiple templates per task...this will work, but we can do better

Use features rather than templates

Layered processing: inputs - features - classification

Layered processing: inputs - features - classification

How to obtain features? - learning!

Multi-layer network

$$y_k = \operatorname{softmax}\left(\sum_{r=1}^{H} w_{kr}^{(2)} h_r^{(1)} + b_k\right) \quad h_j^{(1)} = \operatorname{sigmoid}\left(\sum_{s=1}^{d} w_{js}^{(1)} x_s + b_j\right)$$

Multi-layer network for MNIST

(image from: Michael Nielsen, Neural Networks and Deep Learning,

http://neuralnetworksanddeeplearning.com/chap1.html)

Training multi-layer networks: Credit assignment

- Hidden units make training the weights more complicated, since the hidden units affect the error function indirectly via all the outputs
- The credit assignment problem
 - what is the "error" of a hidden unit?
 - how important is input-hidden weight $w_{ii}^{(1)}$ to output unit k?

Training multi-layer networks: Credit assignment

- Hidden units make training the weights more complicated, since the hidden units affect the error function indirectly via all the outputs
- The credit assignment problem
 - what is the "error" of a hidden unit?
 - how important is input-hidden weight $w_{ii}^{(1)}$ to output unit k?
- What is the gradient of the error with respect to each weight? (How to compute grads_wrt_params?)

Training multi-layer networks: Credit assignment

- Hidden units make training the weights more complicated, since the hidden units affect the error function indirectly via all the outputs
- The credit assignment problem
 - what is the "error" of a hidden unit?
 - how important is input-hidden weight $w_{ii}^{(1)}$ to output unit k?
- What is the gradient of the error with respect to each weight? (How to compute grads_wrt_params?)
- Solution: *back-propagation of error* (backprop)
- Backprop enables the gradients to be computed. These gradients are used by gradient descent to train the weights.

Training output weights

Training output weights

Training MLPs: Error function and required gradients

• Cross-entropy error function:

$$E^n = -\sum_{k=1}^C t_k^n \ln y_k^n$$

- Required gradients (grads_wrt_params): $\frac{\partial E^n}{\partial w_{\iota_i}^{(2)}}$ $\frac{\partial E^n}{\partial w_{\iota_i}^{(1)}}$ $\frac{\partial E^n}{\partial b_{\iota}^{(2)}}$ $\frac{\partial E^n}{\partial b_{\iota}^{(1)}}$
- Gradient for hidden-to-output weights similar to single-layer network:

$$\frac{\partial E^{n}}{\partial w_{kj}^{(2)}} = \frac{\partial E^{n}}{\partial z_{k}^{(2)}} \cdot \frac{\partial z_{k}^{(2)}}{\partial w_{kj}} = \left(\sum_{c=1}^{C} \frac{\partial E^{n}}{\partial y_{c}} \cdot \frac{\partial y_{c}}{\partial z_{k}^{(2)}}\right) \cdot \frac{\partial z_{k}^{(2)}}{\partial w_{kj}}$$

$$= \underbrace{(y_{k} - t_{k})}_{g_{k}^{(2)}} h_{j}^{(1)}$$

Training MLPs: Error function and required gradients

• Cross-entropy error function:

gı

$$E^n = -\sum_{k=1}^C t^n_k \ln y^n_k$$

- Required gradients (grads_wrt_params): $\frac{\partial E^n}{\partial w_{ki}^{(2)}}$ $\frac{\partial E^n}{\partial w_{ii}^{(1)}}$ $\frac{\partial E^n}{\partial b_k^{(2)}}$ $\frac{\partial E^n}{\partial b_i^{(1)}}$
- Gradient for hidden-to-output weights similar to single-layer network:

$$\underbrace{\left[\frac{\partial E^{n}}{\partial w_{kj}^{(2)}}\right]}_{\text{rads_wrt_params}} = \frac{\partial E^{n}}{\partial z_{k}^{(2)}} \cdot \frac{\partial z_{k}^{(2)}}{\partial w_{kj}} = \left(\sum_{c=1}^{C} \frac{\partial E^{n}}{\partial y_{c}} \cdot \frac{\partial y_{c}}{\partial z_{k}^{(2)}}\right) \cdot \frac{\partial z_{k}^{(2)}}{\partial w_{kj}}$$

$$= \underbrace{(y_{k} - t_{k})}_{\text{error.grad}} h_{j}^{(1)}$$

Back-propagation of error: hidden unit error signal

Training MLPs: Input-to-hidden weights

To compute $g_j^{(1)} = \partial E^n / \partial a_j^{(1)}$, error signal for hidden unit *j*, sum over all output units' contributions to $g_j^{(1)}$:

$$\begin{split} \boxed{g_j^{(1)}} &= \sum_{c=1}^{K} \frac{\partial E^n}{\partial z_c^{(2)}} \cdot \frac{\partial z_c^{(2)}}{\partial z_j^{(1)}} = \left(\sum_{c=1}^{K} g_c^{(2)} \cdot \frac{\partial z_c^{(2)}}{\partial h_j^{(1)}}\right) \cdot \frac{\partial h_j^{(1)}}{\partial z_j^{(1)}} \\ &= \left(\sum_{c=1}^{K} g_c^{(2)} w_{cj}^{(2)}\right) h_j^{(1)} (1 - h_j^{(1)}) \end{split}$$

Training MLPs: Input-to-hidden weights

To compute $g_j^{(1)} = \partial E^n / \partial a_j^{(1)}$, error signal for hidden unit *j*, sum over all output units' contributions to $g_j^{(1)}$:

$$\begin{aligned}
\left[g_{j}^{(1)} \right] &= \sum_{c=1}^{K} \frac{\partial E^{n}}{\partial z_{c}^{(2)}} \cdot \frac{\partial z_{c}^{(2)}}{\partial z_{j}^{(1)}} = \left(\sum_{c=1}^{K} g_{c}^{(2)} \cdot \frac{\partial z_{c}^{(2)}}{\partial h_{j}^{(1)}} \right) \cdot \frac{\partial h_{j}^{(1)}}{\partial z_{j}^{(1)}} \\
&= \underbrace{\left(\sum_{c=1}^{K} g_{c}^{(2)} w_{cj}^{(2)} \right)}_{\text{AffineLayer.bprop}} \underbrace{h_{j}^{(1)} (1 - h_{j}^{(1)})}_{\text{SigmoidLayer.bprop}} \\
&= \underbrace{MIP}_{i} \left[\text{struck} 3 / 1 \text{ October 2019} \right] \quad \text{Deen Neural Networks (1)}
\end{aligned}$$

Training MLPs: Gradients

• grads_wrt_params:

$$\boxed{\begin{array}{l} \displaystyle \frac{\partial E^n}{\partial w_{kj}^{(2)}} = (y_k - t_k) \cdot h_j^{(1)} \\ \\ \displaystyle \frac{\partial E^n}{\partial w_{ji}^{(1)}} = \left(\sum_{c=1}^k g_c^{(2)} w_{cj}^{(2)}\right) \cdot h_j^{(1)} (1 - h_j^{(1)}) \cdot x_i \end{array}$$

Training MLPs: Gradients

• grads_wrt_params:

$$\frac{\partial E^{n}}{\partial w_{kj}^{(2)}} = \underbrace{(y_{k} - t_{k})}_{\text{CrossEntropySoftmaxError.grad}} \cdot h_{j}^{(1)}$$

$$\frac{\partial E^{n}}{\partial w_{ji}^{(1)}} = \underbrace{\left(\sum_{c=1}^{k} g_{c}^{(2)} w_{cj}^{(2)}\right)}_{\text{AffineLayer.bprop}} \cdot \underbrace{h_{j}^{(1)}(1 - h_{j}^{(1)})}_{\text{SigmoidLayer.bprop}} \cdot x_{i}$$

Training MLPs: Gradients

• grads_wrt_params:

$$\begin{array}{c}
 \overline{\frac{\partial E^{n}}{\partial w_{kj}^{(2)}}} = \underbrace{(y_{k} - t_{k})}_{\text{CrossEntropySoftmaxError.grad}} \cdot h_{j}^{(1)} \\
 \overline{\frac{\partial E^{n}}{\partial w_{ji}^{(1)}}} = \underbrace{\left(\sum_{c=1}^{k} g_{c}^{(2)} w_{cj}^{(2)}\right)}_{\text{AffineLayer.bprop}} \cdot \underbrace{h_{j}^{(1)}(1 - h_{j}^{(1)})}_{\text{SigmoidLayer.bprop}} \cdot x_{i}
\end{array}$$

• Exercise: write down expressions for the gradients w.r.t. the biases

$$\frac{\partial E^n}{\partial b_k^{(2)}} \qquad \frac{\partial E^n}{\partial b_j^{(1)}}$$

- The back-propagation of error algorithm is summarised as follows:
 - Apply an input vectors from the training set, x, to the network and forward propagate to obtain the output vector y
 - 2. Using the target vector ${\bf t}$ compute the error E^n
 - 3. Evaluate the error gradients $g_k^{(2)}$ for each output unit using error.grad
 - 4. Evaluate the error gradients $g_j^{(1)}$ for each hidden unit using AffineLayer.bprop and SigmoidLayer.bprop
 - 5. Evaluate the derivatives (grads_wrt_params) for each training pattern
- Back-propagation can be extended to multiple hidden layers, in each case computing the $g^{(\ell)}$ s for the current layer as a weighted sum of the $g^{(\ell+1)}$ s of the next layer

Training with multiple hidden layers

Training with multiple hidden layers

Training with multiple hidden layers

Are there alternatives to Sigmoid Hidden Units?

Sigmoid function

Sigmoid Hidden Units (SigmoidLayer)

- Compress unbounded inputs to (0,1), saturating high magnitudes to 1
- Interpretable as the probability of a feature defined by their weight vector
- Interpretable as the (normalised) firing rate of a neuron

Sigmoid Hidden Units (SigmoidLayer)

- $\bullet\,$ Compress unbounded inputs to (0,1), saturating high magnitudes to 1
- Interpretable as the probability of a feature defined by their weight vector
- Interpretable as the (normalised) firing rate of a neuron

However...

- Saturation causes gradients to approach 0
 - If the output of a sigmoid unit is h, then the gradient is h(1 − h) which approaches 0 as h saturates to 0 or 1 − hence the gradients it multiplies into approach 0.
 - Small gradients result in small parameter changes, so learning becomes slow
- Outputs are not centred at 0
 - The output of a sigmoid layer will have mean > 0 numerically undesirable.

tanh

$$tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
$$sigmoid(x) = \frac{1 + tanh(x/2)}{2}$$

Derivative: $rac{d}{dx} anh(x) = 1 - anh^2(x)$

- tanh has same shape as sigmoid but has output range ± 1
- Results about approximation capability using sigmoid layers also apply to tanh layers

- tanh has same shape as sigmoid but has output range ± 1
- Results about approximation capability using sigmoid layers also apply to tanh layers
- Possible reason to prefer tanh over sigmoid: allowing units to be positive or negative allows gradient for weights into a hidden unit to have a different sign

- tanh has same shape as sigmoid but has output range ± 1
- Results about approximation capability using sigmoid layers also apply to tanh layers
- Possible reason to prefer tanh over sigmoid: allowing units to be positive or negative allows gradient for weights into a hidden unit to have a different sign

- tanh has same shape as sigmoid but has output range ± 1
- Results about approximation capability using sigmoid layers also apply to tanh layers
- Possible reason to prefer tanh over sigmoid: allowing units to be positive or negative allows gradient for weights into a hidden unit to have a different sign
- Saturation still a problem

Rectified Linear Unit – ReLU

$$\operatorname{relu}(x) = \max(0, x)$$

Derivative:

$$\frac{d}{dx}\operatorname{relu}(x) = \begin{cases} 0 & \text{if } x \leq 0 \\ 1 & \text{if } x > 0 \end{cases}$$

ReLU hidden units (ReluLayer)

- Similar approximation results to tanh and sigmoid hidden units
- Empirical results for speech and vision show consistent improvements using relu over sigmoid or tanh
- Unlike tanh or sigmoid there is no positive saturation saturation results in very small derivatives (and hence slower learning)

ReLU hidden units (ReluLayer)

- Similar approximation results to tanh and sigmoid hidden units
- Empirical results for speech and vision show consistent improvements using relu over sigmoid or tanh
- Unlike tanh or sigmoid there is no positive saturation saturation results in very small derivatives (and hence slower learning)
- Negative input to relu results in zero gradient (and hence no learning)
- Relu is computationally efficient: max(0, x)
- Relu units can "die" (i.e. respond with 0 to everything)
- Relu units can be very sensitive to the learning rate

Lab 3 covers how multiple layer networks are modelled in the mlp framework.

- Representing activation functions as layer, applied after a linear (affine) layer
- Stacking layers together to build multi-layer networks with non-linear activation functions (e.g. sigmoid) for the hidden layer
- Using Layer.fprop methods to implement the forward propagation and and Layer.bprop methods to implement back propagation to compute the gradients
- Training softmax models on MNIST
- Training deeper multi-layer networks on MNIST
- Using various non-linear activation functions for the hidden layer (sigmoid, tanh, relu)

- Understanding what single-layer networks compute
- How multi-layer networks allow feature computation
- Training multi-layer networks using back-propagation of error
- Tanh and ReLU activation functions
- Multi-layer networks are also referred to as *deep neural networks* or *multi-layer perceptrons*
- Reading:
 - Nielsen, chapter 2
 - Goodfellow, sections 6.3, 6.4, 6.5
 - Bishop, sections 3.1, 3.2, and chapter 4