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Recap: Softmax single layer network

+ + +

class  1 class  2 class  3

softmax

inputs
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What Do

Neural Networks Do?



What Do

Single Layer

Neural Networks Do?



Single layer network

Single-layer network, 1 output, 2 inputs

+

x1 x2
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Geometric interpretation

Single-layer network, 1 output, 2 inputs

w

� b

||w||

x1

x2

y(w;x) = 0

Bishop, sec 3.1
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Single layer network

Single-layer network, 3 outputs, 2 inputs
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Example data (three classes)
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Classification regions with single-layer network
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Plot of Decision regions

Single-layer networks are limited to linear classification boundaries
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Single layer network trained on MNIST Digits

0
10 Outputs

784 Inputs

784x10 weight matrix

1 2 3 4 5 6 7 8 9

. . . .

28x28

Weights of each output unit define a “template” for the class
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Hinton Diagrams

Visualise the weights for class k

. . . .
400 (20x20) inputs
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Hinton diagram for single layer network trained on MNIST

• Weights for each class act as a “discriminative template”

• Inner product of class weights and input to measure closeness to each template

• Classify to the closest template (maximum value output)

0 1

2 3
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Question

What are the pros and cons

of using a single-layer network

for MNIST classification?
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Multi-Layer Networks



From templates to features

• Good classification needs to cope with the variability of real data: scale, skew,

rotation, translation, . . .

• Very difficult to do with a single template per class

• Could have multiple templates per task. . . this will work, but we can do better

Use features rather than templates

(images from: Nielsen, chapter 1)
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Incorporating features in neural network architecture

Layered processing: inputs - features - classification

0 1 2 3 4 5 6 7 8 9

. . . .

. . . .. . . .

How to obtain features? - learning!
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Incorporating features in neural network architecture
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Multi-layer network

yk = softmax

(
H∑

r=1

w
(2)
kr h

(1)
r + bk

)
h
(1)
j = sigmoid

(
d∑

s=1

w
(1)
js xs + bj

)
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Multi-layer network for MNIST

(image from: Michael Nielsen, Neural Networks and Deep Learning,

http://neuralnetworksanddeeplearning.com/chap1.html)
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Training multi-layer networks: Credit assignment

• Hidden units make training the weights more complicated, since the hidden units

affect the error function indirectly via all the outputs

• The credit assignment problem

• what is the “error” of a hidden unit?

• how important is input-hidden weight w
(1)
ji to output unit k?

• What is the gradient of the error with respect to each weight?

(How to compute grads wrt params?)

• Solution: back-propagation of error (backprop)

• Backprop enables the gradients to be computed. These gradients are used by

gradient descent to train the weights.
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Training output weights

Outputs

Hidden units

xi

w(2)
1 j w(2)

ℓ j

w(1)
ji

yKy�y1

w(2)
K j

hj
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Training output weights

Outputs

Hidden units

xi

w(2)
1 j w(2)

ℓ j

w(1)
ji

yKy�y1

w(2)
K j

hj

g
(2)
K

g
(2)
`g

(2)
1

@En

@w
(2)
kj

= g
(2)
k h

(1)
j
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Training MLPs: Error function and required gradients

• Cross-entropy error function:

En = −
C∑

k=1

tnk ln ynk

• Required gradients (grads wrt params): ∂En

∂w
(2)
kj

∂En

∂w
(1)
ji

∂En

∂b
(2)
k

∂En

∂b
(1)
j

• Gradient for hidden-to-output weights similar to single-layer network:

∂En

∂w
(2)
kj

=
∂En

∂z
(2)
k

· ∂z
(2)
k

∂wkj
=

(
C∑

c=1

∂En

∂yc
· ∂yc

∂z
(2)
k

)
· ∂z

(2)
k

∂wkj

= (yk − tk)︸ ︷︷ ︸
g
(2)
k

h
(1)
j

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 19



Training MLPs: Error function and required gradients

• Cross-entropy error function:

En = −
C∑

k=1

tnk ln ynk

• Required gradients (grads wrt params): ∂En

∂w
(2)
kj

∂En

∂w
(1)
ji

∂En

∂b
(2)
k

∂En

∂b
(1)
j

• Gradient for hidden-to-output weights similar to single-layer network:

∂En

∂w
(2)
kj

︸ ︷︷ ︸
grads wrt params

=
∂En

∂z
(2)
k

· ∂z
(2)
k

∂wkj
=

(
C∑

c=1

∂En

∂yc
· ∂yc

∂z
(2)
k

)
· ∂z

(2)
k

∂wkj

= (yk − tk)︸ ︷︷ ︸
error.grad

h
(1)
j

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 19



Back-propagation of error: hidden unit error signal

Outputs

Hidden units

xi

w(2)
1 j w(2)

ℓ j

w(1)
ji

yKy�y1

w(2)
K j

hj

g
(1)
j =

 X

`

g
(2)
l w`j

!
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` g
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= g
(1)
j xi
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Training MLPs: Input-to-hidden weights

∂En

∂w
(1)
ji

=
∂En

∂z
(1)
j

︸ ︷︷ ︸
g
(1)
j

·
∂z

(1)
j

∂w
(1)
ji︸ ︷︷ ︸
xi

To compute g
(1)
j = ∂En/∂a

(1)
j , error signal for hidden unit j , sum over all output units’

contributions to g
(1)
j :

g
(1)
j =

K∑

c=1

∂En

∂z
(2)
c

· ∂z
(2)
c

∂z
(1)
j

=




K∑

c=1

g
(2)
c · ∂z

(2)
c

∂h
(1)
j


 ·

∂h
(1)
j

∂z
(1)
j

=

(
K∑

c=1

g
(2)
c w

(2)
cj

)
h
(1)
j (1 − h

(1)
j )
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Training MLPs: Input-to-hidden weights

∂En

∂w
(1)
ji

︸ ︷︷ ︸
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j
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·
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(1)
j :

g
(1)
j =

K∑

c=1

∂En

∂z
(2)
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(2)
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(1)
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
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SigmoidLayer.bprop
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Training MLPs: Gradients

• grads wrt params:

∂En

∂w
(2)
kj

= (yk − tk) · h(1)j

∂En

∂w
(1)
ji

=

(
k∑

c=1

g
(2)
c w

(2)
cj

)
· h(1)j (1 − h

(1)
j ) · xi

• Exercise: write down expressions for the gradients w.r.t. the biases

∂En

∂b
(2)
k

∂En

∂b
(1)
j
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Back-propagation of error

• The back-propagation of error algorithm is summarised as follows:

1. Apply an input vectors from the training set, x, to the network and forward

propagate to obtain the output vector y

2. Using the target vector t compute the error E n

3. Evaluate the error gradients g
(2)
k for each output unit using error.grad

4. Evaluate the error gradients g
(1)
j for each hidden unit using AffineLayer.bprop

and SigmoidLayer.bprop

5. Evaluate the derivatives (grads wrt params) for each training pattern

• Back-propagation can be extended to multiple hidden layers, in each case

computing the g (`)s for the current layer as a weighted sum of the g (`+1)s of the

next layer
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Training with multiple hidden layers
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Training with multiple hidden layers
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Training with multiple hidden layers
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Are there alternatives
to Sigmoid Hidden Units?



Sigmoid function
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g(
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Logistic sigmoid activation function   g(a) = 1/(1+exp(−a))



Sigmoid Hidden Units (SigmoidLayer)

• Compress unbounded inputs to (0,1), saturating high magnitudes to 1

• Interpretable as the probability of a feature defined by their weight vector

• Interpretable as the (normalised) firing rate of a neuron

However. . .

• Saturation causes gradients to approach 0

• If the output of a sigmoid unit is h, then the gradient is h(1 − h) which approaches 0

as h saturates to 0 or 1 – hence the gradients it multiplies into approach 0.

• Small gradients result in small parameter changes, so learning becomes slow

• Outputs are not centred at 0

• The output of a sigmoid layer will have mean> 0 – numerically undesirable.
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tanh

tanh(x) =
ex − e−x

ex + e−x

sigmoid(x) =
1 + tanh(x/2)

2

Derivative:

d

dx
tanh(x) = 1 − tanh2(x)
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tanh hidden units (TanhLayer)

• tanh has same shape as sigmoid but

has output range ±1

• Results about approximation capability

using sigmoid layers also apply to tanh

layers

• Possible reason to prefer tanh over

sigmoid: allowing units to be positive

or negative allows gradient for weights

into a hidden unit to have a different

sign

• Saturation still a problem
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Rectified Linear Unit – ReLU

relu(x) = max(0, x)

Derivative:

d

dx
relu(x) =





0 if x ≤ 0

1 if x > 0

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 28



ReLU hidden units (ReluLayer)

• Similar approximation results to tanh and sigmoid hidden units

• Empirical results for speech and vision show consistent improvements using relu

over sigmoid or tanh

• Unlike tanh or sigmoid there is no positive saturation – saturation results in very

small derivatives (and hence slower learning)

• Negative input to relu results in zero gradient (and hence no learning)

• Relu is computationally efficient: max(0, x)

• Relu units can “die” (i.e. respond with 0 to everything)

• Relu units can be very sensitive to the learning rate

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 29



ReLU hidden units (ReluLayer)

• Similar approximation results to tanh and sigmoid hidden units

• Empirical results for speech and vision show consistent improvements using relu

over sigmoid or tanh

• Unlike tanh or sigmoid there is no positive saturation – saturation results in very

small derivatives (and hence slower learning)

• Negative input to relu results in zero gradient (and hence no learning)

• Relu is computationally efficient: max(0, x)

• Relu units can “die” (i.e. respond with 0 to everything)

• Relu units can be very sensitive to the learning rate

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 29



Lab 3: 03 Multiple layer models

Lab 3 covers how multiple layer networks are modelled in the mlp framework.

• Representing activation functions as layer, applied after a linear (affine) layer

• Stacking layers together to build multi-layer networks with non-linear activation

functions (e.g. sigmoid) for the hidden layer

• Using Layer.fprop methods to implement the forward propagation and and

Layer.bprop methods to implement back propagation to compute the gradients

• Training softmax models on MNIST

• Training deeper multi-layer networks on MNIST

• Using various non-linear activation functions for the hidden layer (sigmoid, tanh,

relu)

MLP Lecture 3 / 1 October 2019 Deep Neural Networks (1) 30



Summary

• Understanding what single-layer networks compute

• How multi-layer networks allow feature computation

• Training multi-layer networks using back-propagation of error

• Tanh and ReLU activation functions

• Multi-layer networks are also referred to as deep neural networks or

multi-layer perceptrons

• Reading:

• Nielsen, chapter 2

• Goodfellow, sections 6.3, 6.4, 6.5

• Bishop, sections 3.1, 3.2, and chapter 4
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