
Single Layer Networks (2)

Stochastic gradient descent; Classification

Hakan Bilen

Machine Learning Practical — MLP Lecture 2

24 September 2019

http://www.inf.ed.ac.uk/teaching/courses/mlp/

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 1

http://www.inf.ed.ac.uk/teaching/courses/mlp/

Single Layer Networks

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 2

Recap: Gradient descent for a single-layer networkRecap: Gradient descent for a single-layer network

x1 x2 x3 x4 x5

y2 =

5X

i=1

w2ixi

w24

�w24 =
1

N

NX

n=1

(yn
2 � tn2)xn

4

(1) fprop

(2) error

(3) error_grad

(4) grads_wrt_params

MLP Lecture 2 / 25 September 2018 Single Layer Networks (2) 3

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 3

Stochastic Gradient Descent (SGD)

• Training by batch gradient descent is very slow for large training data sets

• The algorithm sums the gradients over the entire training set before making an

update

• Since the update steps (η) are small, many updates are needed

• Solution: Stochastic Gradient Descent (SGD)

• In SGD the complete gradient ∂E/∂wki (obtained by averaging over the entire

training dataset) is approximated by the gradient for a point ∂En/∂wki

• The weights are updated after each training example rather than after the batch

of training examples

• Inaccuracies in the gradient estimates are washed away by the many

approximations

• Present the training set in random order, to prevent multiple similar data points

(with similar gradient approximation inaccuracies) appearing in succession

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 4

Stochastic Gradient Descent (SGD)

• Training by batch gradient descent is very slow for large training data sets

• The algorithm sums the gradients over the entire training set before making an

update

• Since the update steps (η) are small, many updates are needed

• Solution: Stochastic Gradient Descent (SGD)

• In SGD the complete gradient ∂E/∂wki (obtained by averaging over the entire

training dataset) is approximated by the gradient for a point ∂En/∂wki

• The weights are updated after each training example rather than after the batch

of training examples

• Inaccuracies in the gradient estimates are washed away by the many

approximations

• Present the training set in random order, to prevent multiple similar data points

(with similar gradient approximation inaccuracies) appearing in succession

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 4

Stochastic Gradient Descent (SGD)

• Training by batch gradient descent is very slow for large training data sets

• The algorithm sums the gradients over the entire training set before making an

update

• Since the update steps (η) are small, many updates are needed

• Solution: Stochastic Gradient Descent (SGD)

• In SGD the complete gradient ∂E/∂wki (obtained by averaging over the entire

training dataset) is approximated by the gradient for a point ∂En/∂wki

• The weights are updated after each training example rather than after the batch

of training examples

• Inaccuracies in the gradient estimates are washed away by the many

approximations

• Present the training set in random order, to prevent multiple similar data points

(with similar gradient approximation inaccuracies) appearing in succession

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 4

SGD Pseudocode (linear network)

1: procedure SGDTraining(X,T,W)

2: initialize W to small random numbers

3: randomize order of training examples in X

4: while not converged do

5: for n← 1,N do

6: for k ← 1,K do

7: yn
k ←

∑d
i=1 wkix

n
i + bk

8: gn
k ← yn

k − tnk
9: for i ← 1, d do

10: wki ← wki − η · gn
k · x

n
i

11: end for

12: bk ← bk − η · gn
k

13: end for

14: end for

15: end while

16: end procedure

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 5

SGD Pseudocode (linear network)

1: procedure SGDTraining(X,T,W)

2: initialize W to small random numbers

3: randomize order of training examples in X

4: while not converged do

5: for n← 1,N do

6: for k ← 1,K do

7: yn
k ←

∑d
i=1 wkix

n
i + bk

8: gn
k ← yn

k − tn
k

9: for i ← 1, d do

10: wki ← wki − η · gn
k · x

n
i

11: end for

12: bk ← bk − η · gn
k

13: end for

14: end for

15: end while

16: end procedure

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 5

Minibatches

• Batch gradient descent – compute the gradient from the batch of N training

examples

• Stochastic gradient descent – compute the gradient from 1 training example each

time

• Intermediate – compute the gradient from a minibatch of M training examples –

M > 1, M << N

• Benefits of minibatch:

• Computationally efficient by making best use of vectorisation, keeping processor

pipelines full – can parallelise the forward prop and gradient computations by

processing examples in a minibatch together

• Possibly smoother convergence as the gradient estimates are less noisy than using a

single example each time

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 6

Minibatches

• Batch gradient descent – compute the gradient from the batch of N training

examples

• Stochastic gradient descent – compute the gradient from 1 training example each

time

• Intermediate – compute the gradient from a minibatch of M training examples –

M > 1, M << N

• Benefits of minibatch:

• Computationally efficient by making best use of vectorisation, keeping processor

pipelines full – can parallelise the forward prop and gradient computations by

processing examples in a minibatch together

• Possibly smoother convergence as the gradient estimates are less noisy than using a

single example each time

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 6

SGD Pseudocode (linear network)

1: procedure SGDTraining(X,T,W)

2: initialize W to small random numbers

3: randomize order of training examples in X

4: while not converged do

5: for n← 1,N do

6: for k ← 1,K do

7: yn
k ←

∑d
i=1 wkix

n
i + bk

8: gn
k ← yn

k − tnk
9: for i ← 1, d do

10: wki ← wki − η · gn
k · x

n
i

11: end for

12: bk ← bk − η · gn
k

13: end for

14: end for

15: end while

16: end procedure

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 6

SGD Pseudocode (linear network)
How would you modify this code for minibatch training?

1: procedure SGDTraining(X,T,W)

2: initialize W to small random numbers

3: randomize order of training examples in X

4: while not converged do

5: for n← 1,N do

6: for k ← 1,K do

7: yn
k ←

∑d
i=1 wkix

n
i + bk

8: gn
k ← yn

k − tnk
9: for i ← 1, d do

10: wki ← wki − η · gn
k · x

n
i

11: end for

12: bk ← bk − η · gn
k

13: end for

14: end for

15: end while

16: end procedure

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 6

SGD Pseudocode (linear network)
How would you vectorise this code?

1: procedure SGDTraining(X,T,W)

2: initialize W to small random numbers

3: randomize order of training examples in X

4: while not converged do

5: for n← 1,N do

6: for k ← 1,K do

7: yn
k ←

∑d
i=1 wkix

n
i + bk

8: gn
k ← yn

k − tnk
9: for i ← 1, d do

10: wki ← wki − η · gn
k · x

n
i

11: end for

12: bk ← bk − η · gn
k

13: end for

14: end for

15: end while

16: end procedure

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 6

Classification

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 7

MNIST Digit Classification

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 8

Classification and Regression

• Regression: predict the value of the output given an example input vector - e.g.

what will be tomorrow’s rainfall (in mm)

• Classification: predict the category given an example input vector – e.g. will it be

rainy tomorrow (yes or no)?

• Classification outputs:

• Binary: 1 (yes) or 0 (no)

• Probabilistic: p, 1− p (for a 2-class problem)

• One could train a linear single layer network as a classifier:

• Output targets are 1/0 (yes/no)

• At run time if the output y > 0.5 classify as yes, otherwise classify as no

• This will work, but we can do better. . .

• Constrain the outputs to binary or probabilistic using an activation function on

the output unit

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 9

Classification and Regression

• Regression: predict the value of the output given an example input vector - e.g.

what will be tomorrow’s rainfall (in mm)

• Classification: predict the category given an example input vector – e.g. will it be

rainy tomorrow (yes or no)?

• Classification outputs:

• Binary: 1 (yes) or 0 (no)

• Probabilistic: p, 1− p (for a 2-class problem)

• One could train a linear single layer network as a classifier:

• Output targets are 1/0 (yes/no)

• At run time if the output y > 0.5 classify as yes, otherwise classify as no

• This will work, but we can do better. . .

• Constrain the outputs to binary or probabilistic using an activation function on

the output unit

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 9

Classification and Regression

• Regression: predict the value of the output given an example input vector - e.g.

what will be tomorrow’s rainfall (in mm)

• Classification: predict the category given an example input vector – e.g. will it be

rainy tomorrow (yes or no)?

• Classification outputs:

• Binary: 1 (yes) or 0 (no)

• Probabilistic: p, 1− p (for a 2-class problem)

• One could train a linear single layer network as a classifier:

• Output targets are 1/0 (yes/no)

• At run time if the output y > 0.5 classify as yes, otherwise classify as no

• This will work, but we can do better. . .

• Constrain the outputs to binary or probabilistic using an activation function on

the output unit

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 9

Activation functions for two-class classification

Input: x

+

f Output: y

Activation: a

Single-layer network, binary/sigmoid output

Binary (step function): f (z) =

1 if z ≥ 0.5

0 if z < 0.5

Probabilistic (logistic sigmoid function): f (z) =
1

1 + exp(−z)

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 10

Logistic sigmoid function

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a

g(
a)

Logistic sigmoid activation function g(a) = 1/(1+exp(−a))

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 11

Sigmoid single layer networks

• Binary output: activation is not differentiable. Can use perceptron learning to

train binary output single layer networks

• Probabilistic output: single layer network with logistic sigmoid output –

statisticians would call this logistic regression.

Let z be the value of the weighted sum of inputs, before the activation function,

so:

z =
∑

i

wixi + b = wᵀx + b

y = f (z)

• Two classes, so single output y , with weights w

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 12

Sigmoid single layer networks

• Binary output: activation is not differentiable. Can use perceptron learning to

train binary output single layer networks

• Probabilistic output: single layer network with logistic sigmoid output –

statisticians would call this logistic regression.

Let z be the value of the weighted sum of inputs, before the activation function,

so:

z =
∑

i

wixi + b = wᵀx + b

y = f (z)

• Two classes, so single output y , with weights w

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 12

Sigmoid single layer networks

• Training sigmoid single layer network: Gradient descent requires ∂E/∂wi for all

weights:
∂En

∂wi
=
∂En

∂yn
∂yn

∂zn
∂zn

∂wi

For a sigmoid:

y = f (z)
dy

dz
= f ′(z) = f (z)(1− f (z))

• Therefore gradients of the error w.r.t. weights and bias (grads wrt params):

∂En

∂wi
= (yn − tn)︸ ︷︷ ︸

error.grad

f (zn)(1− f (zn))︸ ︷︷ ︸
f ′(zn)

xni

∂En

∂b
= (yn − tn)f (zn)(1− f (zn))

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 13

Sigmoid single layer networks

• Training sigmoid single layer network: Gradient descent requires ∂E/∂wi for all

weights:
∂En

∂wi
=
∂En

∂yn
∂yn

∂zn
∂zn

∂wi

For a sigmoid:

y = f (z)
dy

dz
= f ′(z) = f (z)(1− f (z))

• Therefore gradients of the error w.r.t. weights and bias (grads wrt params):

∂En

∂wi
= (yn − tn)︸ ︷︷ ︸

error.grad

f (zn)(1− f (zn))︸ ︷︷ ︸
f ′(zn)

xni

∂En

∂b
= (yn − tn)f (zn)(1− f (zn))

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 13

Applying gradient descent to a sigmoid single-layer network

f
+ w4

yn = f

5X

i=1

wix
n
i + b

!

w4 = w4 � ⌘(yn � tn) yn(1 � yn)| {z }
f 0(an)

xn
4

xn
1

xn
2 xn

3 xn
4 xn

5

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 14

Cross-entropy error function (1)

• If we use a sigmoid single layer network for a two class problem (C1 (target t = 1)

and C2 (t = 0)), then we can interpret the output as follows

y ∼ P(C1 | x) = P(t = 1 | x; W)

(1− y) ∼ P(C2 | x) = P(t = 0 | x; W)

• Combining, and recalling the target is binary

P(t | x; W) = y t · (1− y)1−t

This is a Bernoulli distribution. We can write the log probability:

lnP(t | x; W) = t ln y + (1− t) ln(1− y)

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 15

Cross-entropy error function (1)

• If we use a sigmoid single layer network for a two class problem (C1 (target t = 1)

and C2 (t = 0)), then we can interpret the output as follows

y ∼ P(C1 | x) = P(t = 1 | x; W)

(1− y) ∼ P(C2 | x) = P(t = 0 | x; W)

• Combining, and recalling the target is binary

P(t | x; W) = y t · (1− y)1−t

This is a Bernoulli distribution. We can write the log probability:

lnP(t | x; W) = t ln y + (1− t) ln(1− y)

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 15

Cross-entropy error function (2)

• Optimise the weights W to maximise the log probability – or to minimise the

negative log probability.

En = − lnP(tn | xn; W) = −(tn ln yn + (1− tn) ln(1− yn)) .

This is called the cross-entropy error function

• Require grads wrt params for gradient descent training: ∂E/∂wi

(wi connects the ith input to the single output).

∂E

∂y
= − t

y
+

1− t

1− y
=
−(1− y)t + y(1− t)

y(1− y)
=

(y − t)

y(1− y)

∂E

∂wi
=
∂E

∂y
· ∂y
∂z
· ∂z
∂wi

=
(y − t)

y(1− y)
· y(1− y) · xi = (y − t)xi

Derivative of the sigmoid y(1− y) cancels.

Exercise: What is the gradient for the bias (∂E∂b)?

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 16

Cross-entropy error function (2)

• Optimise the weights W to maximise the log probability – or to minimise the

negative log probability.

En = − lnP(tn | xn; W) = −(tn ln yn + (1− tn) ln(1− yn)) .

This is called the cross-entropy error function

• Require grads wrt params for gradient descent training: ∂E/∂wi

(wi connects the ith input to the single output).

∂E

∂y
= − t

y
+

1− t

1− y
=
−(1− y)t + y(1− t)

y(1− y)
=

(y − t)

y(1− y)

∂E

∂wi
=
∂E

∂y
· ∂y
∂z
· ∂z
∂wi

=
(y − t)

y(1− y)
· y(1− y) · xi = (y − t)xi

Derivative of the sigmoid y(1− y) cancels.

Exercise: What is the gradient for the bias (∂E∂b)?

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 16

Multi-class networks

• If we have K classes, then use a “one-from-K” (“one-hot”) output coding –

target of the correct class is 1, all other targets are 0

• It is possible to have a multi-class net with sigmoids

f
+

x1 x2 x3 x4 x5

f
+

f
+

class 1 class 2 class 3

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 17

Multi-class networks

• If we have K classes use a “one-hot” (“one-from-N”) output coding – target of

the correct class is 1, all other targets are zero

• It is possible to have a multi-class net with sigmoids

• This will work. . . but we can do better

• Using multiple sigmoids for multiple classes means that the outputs of the

network are not constrained to sum to one

• To interpret the outputs of the net as class probabilities, require
∑

k P(Ck |x) = 1

• Solution – use an output activation function with a sum-to-one constraint:

softmax

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 18

Multi-class networks

• If we have K classes use a “one-hot” (“one-from-N”) output coding – target of

the correct class is 1, all other targets are zero

• It is possible to have a multi-class net with sigmoids

• This will work. . . but we can do better

• Using multiple sigmoids for multiple classes means that the outputs of the

network are not constrained to sum to one

• To interpret the outputs of the net as class probabilities, require
∑

k P(Ck |x) = 1

• Solution – use an output activation function with a sum-to-one constraint:

softmax

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 18

Softmax

yk =
exp(zk)

∑K
j=1 exp(zj)

zk =
d∑

i=1

wkixi + bk

• This form of activation has the following properties

• Each output will be between 0 and 1

• The denominator ensures that the K outputs will sum to 1

• Using softmax we can interpret the network output ynk as an estimate of P(Ck |xn)

• Softmax is the multiclass version of the two-class sigmoid – as sigmoid models a

Bernoulli distribution, so softmax models a Multinoulli (Categorical) distribution

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 19

Softmax

yk =
exp(zk)

∑K
j=1 exp(zj)

zk =
d∑

i=1

wkixi + bk

• This form of activation has the following properties

• Each output will be between 0 and 1

• The denominator ensures that the K outputs will sum to 1

• Using softmax we can interpret the network output ynk as an estimate of P(Ck |xn)

• Softmax is the multiclass version of the two-class sigmoid – as sigmoid models a

Bernoulli distribution, so softmax models a Multinoulli (Categorical) distribution

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 19

Softmax – Training (1)

• We can extend the cross-entropy error function to the multiclass case

En = − lnP(C`n |xn) = −
C∑

k=1

tnk ln ynk

where C`n is the correct class for example n: (tn`n = 1).

• Computing grads wrt params:

∂En

∂wki
=

C∑

c=1

∂E

∂yc
· ∂yc
∂zk
· ∂zk
∂wki

=
C∑

c=1

− tc
yc
· ∂yc
∂zk
· xi

∂En

∂bk
=

C∑

c=1

∂E

∂yc
· ∂yc
∂zk
· ∂zk
∂bk

=
C∑

c=1

− tc
yc
· ∂yc
∂zk

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 20

Softmax – Training (1)

• We can extend the cross-entropy error function to the multiclass case

En = − lnP(C`n |xn) = −
C∑

k=1

tnk ln ynk

where C`n is the correct class for example n: (tn`n = 1).

• Computing grads wrt params:

∂En

∂wki
=

C∑

c=1

∂E

∂yc
· ∂yc
∂zk
· ∂zk
∂wki

=
C∑

c=1

− tc
yc
· ∂yc
∂zk
· xi

∂En

∂bk
=

C∑

c=1

∂E

∂yc
· ∂yc
∂zk
· ∂zk
∂bk

=
C∑

c=1

− tc
yc
· ∂yc
∂zk

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 20

Softmax – Training (2)

• Note that the kth output unit – and hence the weight wki – influences the error

function through all the output units, because of the normalising term in the

denominator. We have to take this into account when differentiating.

• If you do the differentiation you will find:

∂yc
∂zk

= yc(δck − yk)

Where δck is called the Kronecker delta: δck = 1 if c = k , δck = 0 if c 6= k

• We can put it all together to obtain grads wrt params:

∂En

∂wki
= (ynk − tnk)xni

∂En

∂bk
= (ynk − tnk)

Softmax output with cross-entropy error function results in gradients with the

same form as for linear outputs with mean square error!

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 21

Softmax – Training (2)

• Note that the kth output unit – and hence the weight wki – influences the error

function through all the output units, because of the normalising term in the

denominator. We have to take this into account when differentiating.

• If you do the differentiation you will find:

∂yc
∂zk

= yc(δck − yk)

Where δck is called the Kronecker delta: δck = 1 if c = k , δck = 0 if c 6= k

• We can put it all together to obtain grads wrt params:

∂En

∂wki
= (ynk − tnk)xni

∂En

∂bk
= (ynk − tnk)

Softmax output with cross-entropy error function results in gradients with the

same form as for linear outputs with mean square error!

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 21

Exercises

1. Modify the SGD pseudocode for sigmoid outputs

2. Modify the SGD pseudocode for softmax outputs

3. For softmax and cross-entropy error, show that

∂En

∂wki
= (ynk − tnk)xni

(use the quotient rule of differentiation, and the fact that
∑K

c=1 tcyk = yk

because of 1-from-K coding of the target outputs)

4. Think of activation and error functions when an input can belong to multiple

categories (e.g. two digits in an image).

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 22

Summary

• Reading:

• Nielsen chapter 1

• Goodfellow et al sections 5.9, 6.1, 6.2, 8.1

• Stochastic gradient descent (SGD) and minibatch

• Classification and regression

• Sigmoid activation function and cross-entropy

• Multiple classes – Softmax

• Next lecture: multi-layer networks and hidden units

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2) 23

