Single Layer Networks (2)
Stochastic gradient descent; Classification

Hakan Bilen

Machine Learning Practical — MLP Lecture 2
24 September 2019
http://www.inf.ed.ac.uk/teaching/courses/mlp/

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

http://www.inf.ed.ac.uk/teaching/courses/mlp/

Single Layer Networks

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

Recap: Gradient descent for a single-layer network

5
(1) fprop
Y2 = Z W2 L
i=1

(2) error

(3) error_grad

(4) grads_wrt_params

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

Stochastic Gradient Descent (SGD)

e Training by batch gradient descent is very slow for large training data sets
e The algorithm sums the gradients over the entire training set before making an
update
e Since the update steps (1) are small, many updates are needed

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

Stochastic Gradient Descent (SGD)

e Training by batch gradient descent is very slow for large training data sets
e The algorithm sums the gradients over the entire training set before making an
update
e Since the update steps (1) are small, many updates are needed

e Solution: Stochastic Gradient Descent (SGD)

e In SGD the complete gradient OE /Owy; (obtained by averaging over the entire
training dataset) is approximated by the gradient for a point OE" /Owy;

e The weights are updated after each training example rather than after the batch
of training examples

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

Stochastic Gradient Descent (SGD)

e Training by batch gradient descent is very slow for large training data sets
e The algorithm sums the gradients over the entire training set before making an
update
e Since the update steps (7)) are small, many updates are needed

e Solution: Stochastic Gradient Descent (SGD)

e In SGD the complete gradient OE /Owy; (obtained by averaging over the entire
training dataset) is approximated by the gradient for a point OE" /0wy

e The weights are updated after each training example rather than after the batch
of training examples

e |naccuracies in the gradient estimates are washed away by the many
approximations

e Present the training set in random order, to prevent multiple similar data points
(with similar gradient approximation inaccuracies) appearing in succession

MLP Lecture 2 / 24 September 2019 4

SGD Pseudocode (linear network)

1: procedure SGDTRAINING(X, T, W)
2: initialize W to small random numbers
3: randomize order of training examples in X
4: while not converged do
5: for n+ 1, N do
6: for k + 1, K do
T: y,’(” — 27:1 Wk,'XIr' + bk
8: gy —]
9: for i < 1,d do
10: Wk,'(—Wk,'—’r]-gﬁ-X,-n
11: end for
12: bk%bkfn-g}?
13: end for
14: end for

15: end while
16: end procedure

MLP Lecture 2 / 24 September 2019

Single Layer Networks (2)

SGD Pseudocode (linear network)

1:
2:
3:
4.
5:
6:
T:
8:
9:

[y
—_

12:
13:
14:
15:
16:

._.
>

procedure SGDTRAINING(X, T, W)
initialize W to small random numbers
randomize order of training examples in X
while not converged do
for n<+ 1, N do
for k + 1,K do
Y S0 wiixl + by
8k Yk — &
for i+ 1,d do
Wi = Wi — 77 B¢ * X
end for
bx <= bx — 7 - g}
end for
end for
end while
end procedure

MLP Lecture 2 / 24 September 2019

Single Layer Networks (2)

e Batch gradient descent — compute the gradient from the batch of N training
examples

e Stochastic gradient descent — compute the gradient from 1 training example each
time

e Intermediate — compute the gradient from a minibatch of M training examples —
M>1 M<<N

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

e Batch gradient descent — compute the gradient from the batch of N training
examples

e Stochastic gradient descent — compute the gradient from 1 training example each
time
e Intermediate — compute the gradient from a minibatch of M training examples —
M>1 M<<N
e Benefits of minibatch:
e Computationally efficient by making best use of vectorisation, keeping processor
pipelines full — can parallelise the forward prop and gradient computations by
processing examples in a minibatch together

e Possibly smoother convergence as the gradient estimates are less noisy than using a
single example each time

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

SGD Pseudocode (linear network)

procedure SGDTRAINING(X, T, W)
initialize W to small random numbers
randomize order of training examples in X
while not converged do
for n<« 1, N do
for k +— 1, K do
Vi 27:1 wii X' + by
AR
for i< 1,d do
Wi = Wkj — 1) - 8 * X]
end for
by < b —n- g}
end for
end for
end while
end procedure

MLP Lecture 2 / 24 September 2019

Single Layer Networks (2)

SGD Pseudocode (linear network)

0 N OL B ol

procedure SGDTRAINING(X, T, W)
initialize W to small random numbers
randomize order of training examples in X
while not converged do
for n <+ 1, N do
for k +— 1, K do
v S0 wiix? + by
Bk Y —
for i < 1,d do
Wi <= Wij — 11 8 * X[
end for
by < bk —1n- g/
end for
end for
end while
end procedure

MLP Lecture 2 / 24 September 2019

How would you modify this code for minibatch training?

Single Layer Networks (2)

SGD Pseudocode (linear network)

0 N OL B ol

procedure SGDTRAINING(X, T, W)
initialize W to small random numbers
randomize order of training examples in X
while not converged do
for n <+ 1, N do
for k +— 1, K do
v S0 wiix? + by
Bk Y —
for i < 1,d do
Wi <= Wij — 11 8 * X[
end for
by < bk —1n- g/
end for
end for
end while
end procedure

MLP Lecture 2 / 24 September 2019

How would you vectorise this code?

Single Layer Networks (2)

Classification

MLP Lecture September 2019 Single Layer Networks (2)

=
=
e
[
=
[
‘D
(2]
i
O
=
=
(@)
(-
72]
2
2

Q—ONMXNS fre s
O~ > NN —~0 O
Q=N A~ <
V=N FFe w0 o
Q~nNOTWVWI o o
Q~—xIT PnNO ~Q g
C=NOT e =0
QA MTIWVSE rwJd
O —CF m T N2 N\Noe o
O~ T\ -t
O~ (o™ T N9 Nvo
Q- (oINS e oy
Q~dm>\vuv oo
DS — (M J 0D D
Q—c I 09 %
D— 1T OoONI
Q=N TNnS g O~
O~ M Y

O~ THPONY &

(2)

works

Single Layer Net

o
—
o
«
[}
o
£
I3
2
o
o
%]
<
3\
"
[
g
3
=1
5}

Classification and Regression

e Regression: predict the value of the output given an example input vector - e.g.
what will be tomorrow's rainfall (in mm)

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

Classification and Regression

e Regression: predict the value of the output given an example input vector - e.g.
what will be tomorrow's rainfall (in mm)
e Classification: predict the category given an example input vector — e.g. will it be

rainy tomorrow (yes or no)?
e Classification outputs:
e Binary: 1 (yes) or 0 (no)
e Probabilistic: p, 1 — p (for a 2-class problem)

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

Classification and Regression

e Regression: predict the value of the output given an example input vector - e.g.
what will be tomorrow's rainfall (in mm)
e Classification: predict the category given an example input vector — e.g. will it be
rainy tomorrow (yes or no)?
e Classification outputs:
e Binary: 1 (yes) or 0 (no)
e Probabilistic: p, 1 — p (for a 2-class problem)
e One could train a linear single layer network as a classifier:
e Output targets are 1/0 (yes/no)
e At run time if the output y > 0.5 classify as yes, otherwise classify as no
e This will work, but we can do better. ..
e Constrain the outputs to binary or probabilistic using an activation function on
the output unit

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

Activation functions for two-class classification

Output: y

Activation: a

Input: x

Single-layer network, binary/sigmoid output

: . 1 if z>0.5
Binary (step function): f(z)=
0 if z<0.5
1
Probabilistic (logistic sigmoid function): |f(z) = TS on(—2)

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

Logistic sigmoid function

Logistic sigmoid activation function g(a) = 1/(1+exp(-a))
1 T T T T T T T T

Sigmoid single layer networks

e Binary output: activation is not differentiable. Can use perceptron learning to
train binary output single layer networks

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

Sigmoid single layer networks

e Binary output: activation is not differentiable. Can use perceptron learning to

train binary output single layer networks

e Probabilistic output: single layer network with logistic sigmoid output —

statisticians would call this logistic regression.
Let z be the value of the weighted sum of inputs, before the activation function,

SO:

Z:ZW;X;+b:WTX+b
i

y =f(2)

e Two classes, so single output y, with weights w

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

Sigmoid single layer networks

e Training sigmoid single layer network: Gradient descent requires OE /Ow; for all

weights:
OE" OE"0y" 02"

ow; dy" 9z" Ow;

For a sigmoid:
dy

y=1fz) — =f(z)=f(z)1-1(2)

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

Sigmoid single layer networks

e Training sigmoid single layer network: Gradient descent requires OE /Ow; for all

weights:
OE" OE"0y" 02"

ow; dy" 9z" Ow;

For a sigmoid:
y=f2) L=r(2)=r2)1-(2))

dz
e Therefore gradients of the error w.r.t. weights and bias (grads_wrt_params):
aEn n n n n n
aw. |= " =) (2" (A - F(27) xi
1 N’
error.grad f'(z")
OE"

o | = 0" — AN~ ()

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

Applying gradient descent to a sigmoid single-layer network

5

y"=f (D wi} +b

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

Cross-entropy error function (1)

e If we use a sigmoid single layer network for a two class problem (C; (target t = 1)
and G, (t = 0)), then we can interpret the output as follows

y~P(G |x)=P(t=1]|x;W)
(1=y) ~ P(Ca| %) = P(t = 0| ;W)

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

Cross-entropy error function (1)

e If we use a sigmoid single layer network for a two class problem (C; (target t = 1)
and G, (t = 0)), then we can interpret the output as follows

y~P(G |x)=P(t=1]|x;W)
(1=y) ~ P(Ca| %) = P(t = 0| ;W)

e Combining, and recalling the target is binary
=
P(t [x;W)=y" (1—y)*
This is a Bernoulli distribution. We can write the log probability:

InP(t|x;W)=tiny+(1—1t)In(1—y)

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

Cross-entropy error function (2)

e Optimise the weights W to maximise the log probability — or to minimise the
negative log probability.

E"=—InP(t" | x";W) = —(t"Iny" + (1 — t")In(1 — y")) .

This is called the cross-entropy error function

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

Cross-entropy error function (2)

e Optimise the weights W to maximise the log probability — or to minimise the
negative log probability.

E"=—InP(t" | x";W) = —(t"Iny" + (1 — t")In(1 — y")) .

This is called the cross-entropy error function
e Require grads wrt_params for gradient descent training: 0E/Ow;
(w; connects the ith input to the single output).

0E _ _t 1-t —(-yt+y(l-t) (1)
dy y 1-y y(1-vy) y(1-y)
OFE | 5E Oy 0z (y—t)
owi |~ gy 9z ow; y(1-y)

Derivative of the sigmoid y(1 — y) cancels.

Exercise: What is the gradient for the bias ()7

y(1—y)-xi=|(y—t)x

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

Multi-class networks

e If we have K classes, then use a “one-from-K" (“one-hot”) output coding —
target of the correct class is 1, all other targets are 0

e |t is possible to have a multi-class net with sigmoids

class 1 class 2 class 3

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

Multi-class networks

e If we have K classes use a “one-hot” (“one-from-N") output coding — target of

the correct class is 1, all other targets are zero
e |t is possible to have a multi-class net with sigmoids

e This will work. ..but we can do better

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

Multi-class networks

e If we have K classes use a “one-hot” (“one-from-N") output coding — target of
the correct class is 1, all other targets are zero

e |t is possible to have a multi-class net with sigmoids

e This will work. ..but we can do better

e Using multiple sigmoids for multiple classes means that the outputs of the

network are not constrained to sum to one
e To interpret the outputs of the net as class probabilities, require >, P(Cx|x) =1

e Solution — use an output activation function with a sum-to-one constraint:

softmax

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

exp(zk)

> exp(z)

Yk =

d
2 = E WiiX; + by
i=1

e This form of activation has the following properties
e Each output will be between 0 and 1
e The denominator ensures that the K outputs will sum to 1

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

exp(zk)

> exp(z)

Yk =

d
2 = E WiiX; + by
i=1

e This form of activation has the following properties
e Each output will be between 0 and 1
e The denominator ensures that the K outputs will sum to 1

e Using softmax we can interpret the network output y; as an estimate of P(Cy|x")

e Softmax is the multiclass version of the two-class sigmoid — as sigmoid models a
Bernoulli distribution, so softmax models a Multinoulli (Categorical) distribution

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

Softmax — Training (1)

e We can extend the cross-entropy error function to the multiclass case

c
E"=—InP(Cplx") == t{Iny}
k=1

where Cyn is the correct class for example n: (t;, = 1).

24 September 2019 Single Layer Networks (2)

Softmax — Training (1)

e We can extend the cross-entropy error function to the multiclass case

c
E"=—InP(Cplx") == t{Iny}
k=1

where Cyn is the correct class for example n: (t;, = 1).

e Computing grads wrt_params:

BE" _iaE e Oz _ N~ _te e
Owyi _C:1 dye 0z 8Wk,-_c * Ve oz,
OE" _iaE Oye 0z <~ te Oy
Oby _C:1 dye: 0z ab"_c:1 Ye Oz

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

Softmax — Training (2)

e Note that the kth output unit — and hence the weight wy; — influences the error
function through all the output units, because of the normalising term in the
denominator. We have to take this into account when differentiating.

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

Softmax — Training (2)

e Note that the kth output unit — and hence the weight wy; — influences the error
function through all the output units, because of the normalising term in the
denominator. We have to take this into account when differentiating.

e If you do the differentiation you will find:

g}Z/; = Ye(Ock — yk)

Where 6 is called the Kronecker delta: 6o = 1if c =k, 0o =0 if ¢ # k

e We can put it all together to obtain grads_wrt_params:

aEn n n n aEn n n
owe |~ (v — t)xi b |~ (¥ — t)

Softmax output with cross-entropy error function results in gradients with the

same form as for linear outputs with mean square error!

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

Exercises

1. Modify the SGD pseudocode for sigmoid outputs
2. Modify the SGD pseudocode for softmax outputs

3. For softmax and cross-entropy error, show that

OE" n
—— = (yg — t)x]
Wi (V& k)X
(use the quotient rule of differentiation, and the fact that Zle teVi = Yk
because of 1-from-K coding of the target outputs)
4. Think of activation and error functions when an input can belong to multiple

categories (e.g. two digits in an image).

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

e Reading:
e Nielsen chapter 1
e Goodfellow et al sections 5.9, 6.1, 6.2, 8.1

Stochastic gradient descent (SGD) and minibatch

Classification and regression

Sigmoid activation function and cross-entropy

Multiple classes — Softmax

Next lecture: multi-layer networks and hidden units

MLP Lecture 2 / 24 September 2019 Single Layer Networks (2)

