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Classification is about “what object categories are present in the image?”

What other questions can we ask about the image?
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Today’s goal

• Tasks beyond image classification

• How to customize the learning machine for the task of interest
• Customise network architecture

• Design new layer types and loss functions

4



5



Semantic segmentation

Label each pixel with a category 
label

Do not differentiate between 
instances

Evaluation: Mean intersection 
over union (IoU)
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Image credits: CS231 - Stanford - CC0 public domain

IoU = 
true pos

true pos+false neg+false pos

https://pixabay.com/en/cows-two-cows-dairy-agriculture-1264546/


Classifying image patches

 Computationally expensive! No feature sharing between overlapping patches.
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CNN

CNN

CNN

sheep

sheep

grass

Classify patch 
with CNN

Farabet, et al. (2013) "Learning hierarchical features for scene labeling." PAMI

http://yann.lecun.com/exdb/publis/pdf/farabet-pami-13.pdf


(Fully) Convolutional Network 

● Design a neural network that can generate labels for each pixel at once!
● No spatial dimension reduction (and no fully connected layer)
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(Fully) Convolutional Network 

Design a network that first downsamples and then upsamples to input size!
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Long et al. (2015) "Fully Convolutional Networks for Semantic Segmentation", CVPR
Noh et al. (2015), Learning Deconvolution Network for Semantic Segmentation, ICCV
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https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
https://arxiv.org/pdf/1505.04366.pdf


convolution vs transpose convolution 

stride=2

☺ It can learn a nonlinear upsampling

 Its input feature is low resolution

Upsampling with transpose convolution
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Upsampling with unpooling

☺ It has information about max locations of high resolution 
features

 It can’t learn to upsample (has no learnable parameters)
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(Fully) Convolutional Network 

Use skip connections to transfer 
pooling switches via skip 
connections

● learn to upscale
● maintain high resolution 

shape information
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Input
3× 𝐻 ×𝑊

Predictions
𝐻 ×𝑊

Noh et al. (2015), Learning Deconvolution Network for Semantic Segmentation, ICCV

skip connection

skip connection

https://arxiv.org/pdf/1505.04366.pdf
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Object detection

Object detection has two goals
● Classification (e.g. cow)
● Localisation (e.g. [x y w h])

Evaluation metrics is intersection over union

● IoU=Area of overlap

Area of union
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Figure credit

https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/object_localization_and_detection.html


Classification + Localisation

Multi-task problem: Classification + Regression
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c1 c2 c3 c5c4 fc6 fc7

cls

loc

dog 0.9
cat 0.05
…

[x,y,w,h]

cross entropy
loss

ground 
truth label:
dog

ground 
truth box
[x*,y*,w*,h*]

L2 loss

+ loss



Multi object instances

What if number 
of object 
instances vary?

 This will work 
for one object 
instance per 
class!
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𝑐1 𝑐2 𝑐3 𝑐5𝑐4 𝑓𝑐6 𝑓𝑐7 dog [x,y,w,h]

𝑐1 𝑐2 𝑐3 𝑐5𝑐4 𝑓𝑐6 𝑓𝑐7

𝑐1 𝑐2 𝑐3 𝑐5𝑐4 𝑓𝑐6 𝑓𝑐7

person [x,y,w,h]
m.bike [x,y,w,h]

dog [x,y,w,h]
dog [x,y,w,h]
…
many more



Classifying sliding windows

1. Crop an image 
to many 
regions

2. Apply a CNN to 
classify each 
region
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𝑐1 𝑐2 𝑐3 𝑐5𝑐4 𝑓𝑐6 𝑓𝑐7

Background
Background
Sheep
Dog

We need to sample ~100,000 regions to get tight boxes around object instances!



Object proposals

Q. Is there a smart (quick & accurate) way of picking fewer regions that are likely to 
contain objects?
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Alexe et al. (2010), “What is an object?”, CVPR
Uijlings et al. (2013) "Selective search for object recognition." IJCV

Zitnick et al. (2014) "Edge boxes: Locating object proposals from edges." ECCV

https://arxiv.org/pdf/1505.04366.pdf
https://koen.me/research/pub/uijlings-ijcv2013-draft.pdf
https://pdollar.github.io/files/papers/ZitnickDollarECCV14edgeBoxes.pdf


(R)egion-CNN
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Girschick et al. (2014), "Rich feature hierarchies for accurate 
object detection ...”, CVPR

SVMs SVMs
SVMs

Bbox
reg

Bbox
reg

Bbox
reg

https://arxiv.org/abs/1311.2524


What is wrong with R-CNN?

● Training is multi-stage pipeline

○ Fine-tune network with softmax classifier

○ Train post-hoc linear SVMs

○ Train post-hoc bounding box regressor

● Training is slow (84h), takes a lot of disk space

● Inference (test time) is slow

○ 47s / image with VGG16 [Simonyan & Zisserman ICLR15]

○ Fixed by SPP-net [He et al. ECCV14]

20Girschick et al. (2014), "Rich feature hierarchies for accurate object detection and semantic segmentation.”, CVPR

https://arxiv.org/abs/1311.2524


Conv1-5

Fast R-CNN
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Girschick (2015), “Fast R-CNN.”, ICCV

fc6-7

cls loc

Cross entropy + smooth L1 loss

https://arxiv.org/pdf/1504.08083.pdf


Fast R-CNN: RoI pooling
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Girschick (2015), “Fast R-CNN.”, ICCV

𝑐1 𝑐5 𝑓𝑐6 𝑓𝑐7

cls

loc

https://arxiv.org/pdf/1504.08083.pdf


Fast R-CNN vs R-CNN

● Results on PASCAL VOC 2007 dataset
● Base CNN is VGG16
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Fast R-CNN R-CNN

Train time (h) 9.5 84

- Speedup 8.8x 1x

Test time / image 0.32s 47.0s

Test speedup 146x 1x

Accuracy (mean AP) 66.9% 66.0%

Girschick (2015), “Fast R-CNN.”, ICCV

https://arxiv.org/pdf/1504.08083.pdf


What is still wrong with Fast R-CNN?

● Out-of-network object proposals

○ Selective search: 2s / im; 
EdgeBoxes: 0.2s / im

● Can we learn better/faster object 
proposals?

○ Fast(er) R-CNN
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fc6-7

cls loc

Faster R-CNN

A new sub-network: 
Region Proposal Network 
(RPN) predicts object 
proposals from features

Jointly train with 4 losses
1. RPN classify object / 

not object
2. RPN regress box 

coordinates
3. Final classification 

score (all object 
classes)

4. Final box coordinates
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Conv1-5

Classification 
loss

Box regression 
loss

Region proposal 
network

Classification 
loss

Box regression 
loss

Ren et al (2015), “Faster R-CNN: Towards Real-Time Object 
Detection with Region Proposal Networks”, NIPS 

https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf


Fast vs Faster R-CNN

● RPN with 300 proposals can do better than 2k external region proposals
● It is faster due to shared feature computation
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Faster R-CNN Fast R-CNN R-CNN

Test time / image 0.2s 2s 47.0s

Test speedup 235x 23.5x 1x

Accuracy (mean 
AP)

69.9% 66.9% 66.0%

Ren et al (2015), “Faster R-CNN: Towards Real-Time Object 
Detection with Region Proposal Networks”, NIPS 

https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
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Mask R-CNN

● Builds on Faster R-CNN
● Additionally predicts a mask for each box
● Uses an improved RoI pooling (RoIAlign)

28He et al. (2017) “Mask r-cnn” ICCV

He, Kaiming, et al. "Mask r-cnn." Computer Vision (ICCV), 2017 IEEE International Conference on. IEEE, 2017.


Mask R-CNN

29He et al. (2017) “Mask r-cnn” ICCV

He, Kaiming, et al. "Mask r-cnn." Computer Vision (ICCV), 2017 IEEE International Conference on. IEEE, 2017.


Summary

Recommended
● Girschick (2015), “Faster R-CNN.” ICCV
● Nice blog about semantic segmentation by Arthur Ouaknine
Additional
● Long et al. (2015) "Fully Convolutional Networks for Semantic Segmentation", CVPR
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https://arxiv.org/pdf/1504.08083.pdf
https://medium.com/@arthur_ouaknine/review-of-deep-learning-algorithms-for-image-semantic-segmentation-509a600f7b57
https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf


Next lecture

31


