Visualising convolutional networks

Hakan Bilen

Machine Learning Practical - MLP Lecture 12 16 January 2019

http://www.inf.ed.ac.uk/teaching/courses/mlp/

Lectures in second semester

- Understanding convolutional networks
- ♦ Generative adversarial networks
- Domain adaptation and transfer learning
- Convolutional network design and compression (Dr Elliot Crowley)
- Object detection and semantic segmentation
- Language and vision models
- ♦ Video analytics

Recap: Convolutional Neural Networks (CNNs)

What is inside the black box (filters and feature maps)?

Why does it matter?

- Interpretability: understand what they learn and why they work
- ☐ Monitor training process (evolution of training)
- Gain intuitions to develop better models
- Diagnose potential problems

Today

- 1. Visualize filters / weights
- 2. Analyze activations
- 3. Deconvolutional networks
- 4. Saliency deconvolutional networks
- 5. Adversarial noise

1. Visualize filters

1. Visualize filters

conv1: 96 filters 11x11x3

Question:

What do these filters detect?

1. Visualize filters

conv1: 96 filters 11x11x3

Oriented edge filters (similar to Gabor filters)

Coloured blob detectors

Monitoring filters during training

Good training: learned filters should exhibit structure and are uncorrelated

Slide credits: Ranzatto & Lecun

2. Analyze activations

Pool5

- 1. Pick a neuron at a layer
- 2. Record it for multiple images
- 3. Show the images with highest activation value
- 4. See whether the images correspond to a common concept

2. Analyze activations

- © Easy to implement
- © Only qualitative analysis

2. Analyze activations quantitatively

- Q. How can we quantify alignment with visual concepts?
- I. Collect images and label all the pixels with various concepts
 - objects, parts, scenes, textures, colours and materials

2. Analyze activations quantitatively

II. Gather responses of neurons to known concepts

- ☐ Input image x to CNN
- Take an activation map $A_k(x)$ at layer l
- $\Box \quad \text{Threshold P}(A_k(x) > T)$
- Upscale to image size

2. Analyze activations quantitatively

III. Measure overlap with human labelled concepts

Forward pass

Intersection over union $IoU = \frac{A \cap B}{A \cup B}$

conv5 unit 107 road (object) IoU=0.15

- ☐ More complex concepts emerge at the later layers
- ☐ Some low level concepts at the later layer are still useful for classification

3. Deconvolutional networks

So far, finding correlations between a set of images and activations

What input pattern originally caused a given activation in the feature maps?

Convnet

How to project the activations back to the input pixel space?

Deconvnet

Convnet

- Deconvnet aims to project the activations back to the input pixel space
- Invert convnet by
 - Unpooling
 - □ (Un)rectification
 - Convolution transpose

Question

Is max pool operation invertible?

y=maxpool(x)

 $x?=(maxpool)^{-1}(y)$

Unpooling

Unpooling

Relation to backprop (see lecture 8)

 \square E is loss function

$$\Box \quad \frac{\partial E}{\partial H_{l-1}} = \frac{\partial E}{\partial H_l} \frac{\partial H_l}{\partial H_{l-1}}$$

Unpooling corresponds to backprop of maxpooling

Unrectification (UnReLU)

$$H_{l-1} \longrightarrow \text{ReLU} \longrightarrow H_l$$

$$H_l = \max(H_{l-1}, 0)$$

$$R_{l-1}$$
 Un-
 $ReLU$
 $R_{l-1} = \max(R_l, 0)$

Relation to backpropagation

$$\frac{\partial E}{\partial H_{l-1}} = \frac{\partial E}{\partial H_l} \cdot \mathbf{1}(H_l > 0)$$

UnReLU does not utilise $R_l \cdot \mathbf{1}(R_l > 0)$ but $\max(R_l, 0)$

Transpose convolution (deconvolution?)

$$H_{l-1} \longrightarrow conv \longrightarrow H_{l}$$

$$\frac{\text{Convolution}}{H_l = conv(H_{l-1}, W_l)}$$

$$R_{l-1} \longleftarrow \frac{t}{conv} \longleftarrow R_l$$

 $\frac{\text{Transpose}}{\text{convolution}}$ $R_{l-1} = conv(R_l, W_l^T)$

- It is not inverse convolution!
- Usually $conv(H_{l-1}, W_l) \neq conv(H_{l-1}, W_l^T)$

Relation to backprop (see lecture 8)

0	0	0	0	$\frac{w_{22}^l w_{21}^l}{w_{12}^l w_{11}^l} =$	∂E	∂E	дE
0	$\frac{\partial E}{\partial h_{11}^l}$	$\frac{\partial E}{\partial h_{12}^l}$	0		$\frac{\partial h_{11}^{l-1}}{\partial E}$	$\frac{\partial h_{12}^{l-1}}{\partial E}$	$\frac{\partial h_{13}^{l-1}}{\partial E}$
0	$\frac{\partial E}{\partial h_{21}^l}$	$\frac{\partial E}{\partial h_{22}^l}$	0		$\frac{\overline{\partial h_{21}^{l-1}}}{\partial E}$	$\frac{\partial h_{22}^{l-1}}{\partial E}$	$\frac{\partial h_{23}^{l-1}}{\partial E}$
0	0	0	0		$\overline{\partial h_{31}^{l-1}}$	$\overline{\partial h_{32}^{l-1}}$	∂h_{33}^{l-1}
Padded $\partial E/\partial H^l$				Rotated W^l	$\partial E/\partial H^{l-1}$		

Layer 1-2: Top-9 Patches

Top 9 activations are projected down to pixel space using deconvolutional net

Patches from validation images that give maximal activation of a given feature map

Layer 3: Top-9 Patches

Top 9 activations are projected down to pixel space using deconvolutional net

Patches from validation images that give maximal activation of a given feature map

Layer 4-5: Top-9 Patches

Which pixels matter most for the prediction?

Question
Can we calculate influence of each pixel on the class probability?

Deconv net vs Saliency net

$$\mathbf{M} = \mathbf{1}(R_l > 0)$$

4. Generic class saliency maps

Can we generate an image that outputs high score for dog?

4. Generic class saliency maps

 \square $argmax_I S_c(I) - \lambda \parallel I \parallel_2^2$ \square Maximize "dogness" by modifying pixel values

4. Generic class saliency maps

4. Image and generic class saliency (Deep dream)

4. Image and generic class saliency maps

37

Adversarial Examples

Problem common to any discriminative method!

Summary

Visualize CNNs

- ♦ Filters
- ♦ Highest activations
- ♦ Deconv network
- Saliency network
- ♦ Generating adversarial samples

Reading material

Recommended

Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, ECCV'14

Extra

- Simonyan, Vedaldi, Zisserman, Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, ICLR'14
- Szegedy et al. Intriguing properties of neural networks, ICLR'14
- Nice summary of adversarial techniques by Karpathy
- Try to generate adversarial examples or interesting pictures!