Hakan Bilen

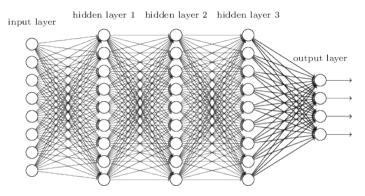
Machine Learning Practical — MLP Lecture 7 30 October / 6 November 2018

MLP Lecture 7 / 30 October / 6 November 2018 Convolutional Networks

E 940

イロト イヨト イヨト イヨト

Recap: Fully-connected network for MNIST



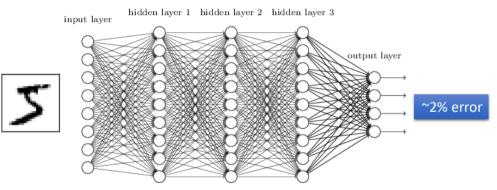
(image from: Michael Nielsen, Neural Networks and Deep Learning, http://neuralnetworksanddeeplearning.com/chap6.html)

Slide credits: S Renals' MLP 2017-18

イロン 不通 と イヨン イヨン ニヨー

Recap: Fully-connected network for MNIST

On MNIST, we can get about 2% error (or even better) using these kind of networks



(image from: Michael Nielsen, Neural Networks and Deep Learning, http://neuralnetworksanddeeplearning.com/chap6.html)

イロン 不良 とうせい イロン 一日

How about more complex image recognition tasks?

- Large variations in position, appearance, shape and size within same object category
- Small variations in appearance between different object categories
- Background clutter and occlusions
- Typical input image size is 227×227

Fully-connected network in high dimension

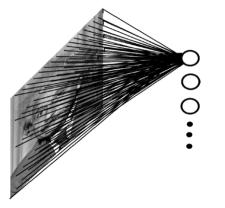


image credit: Lecun & Ranzato

ъ

イロト イヨト イヨト

Fully-connected network in high dimension

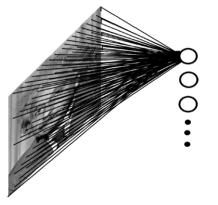


image credit: Lecun & Ranzato

For a 200 $\times 200$ image and 1000 hidden units

< □ > < □ > < □ > < □ >

- # input units is 40,000
- # hidden units is 1000
- # connections is 40,000,000
- # parameters is 40,000,000

Fully-connected network in high dimension

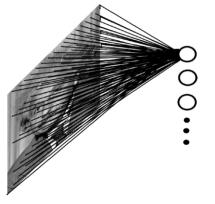


image credit: Lecun & Ranzato

For a 200 $\times 200$ image and 1000 hidden units

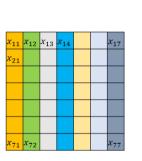
- # input units is 40,000
- # hidden units is 1000
- # connections is 40,000,000
- # parameters is 40,000,000

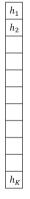
Observations:

- Too many parameters to learn!
- Spatial (2-D) structure of input image is ignored
- Neighbour pixels are treated separately

< □ > < □ > < □ > < □ >

A closer look at fully connected nets





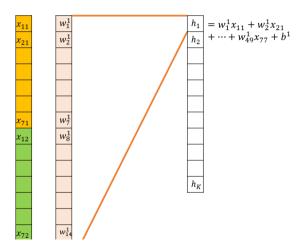
Assume that we have

- 7×7 image X
- K hidden units

3

イロト イヨト イヨト イヨト

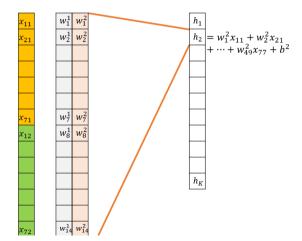
A closer look at fully connected nets



- Unroll the input (7×7) into 49-D
- Affine parameters $W \in \mathcal{R}^{49 imes K}$ and $b \in \mathcal{R}^{K}$

イロト イヨト イヨト

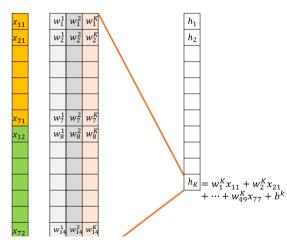
A closer look at fully connected nets



- Unroll the input (7×7) into 49-D
- Affine parameters $W \in \mathcal{R}^{49 imes K}$ and $b \in \mathcal{R}^{K}$

イロト イヨト イヨト

э.



- Connections are dense
- Hidden unit h_k is connected to all input units x_{ij} through w^k_{ij}
- It does not know that x₁₁ is adjacent to x₁₂

イロト イヨト イヨト

э.

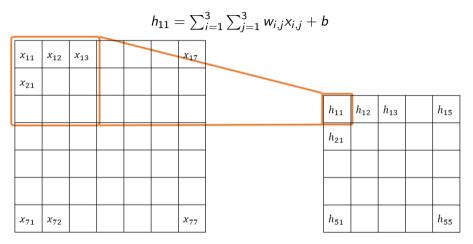
<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃		<i>x</i> ₁₇
<i>x</i> ₂₁				
<i>x</i> ₇₁	x ₇₂			x ₇₇

<i>w</i> ₁₁	<i>w</i> ₁₂	w ₁₃
w ₂₁	w ₂₂	w ₂₃
w ₃₁	w ₃₂	w ₃₃

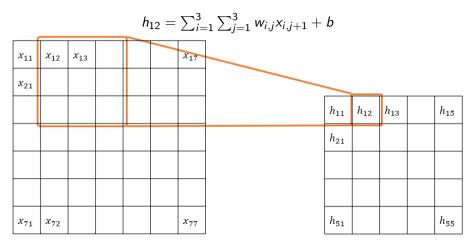
Convolution kernel W

h ₁₁	h_{12}	h_{13}	h_{15}
h_{21}			
h_{51}			h_{55}

Feature map H

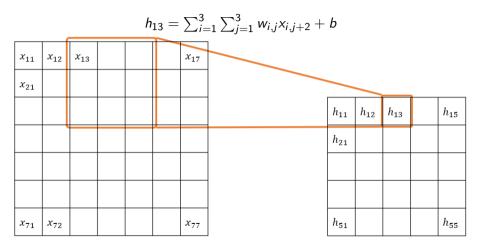


Feature map H

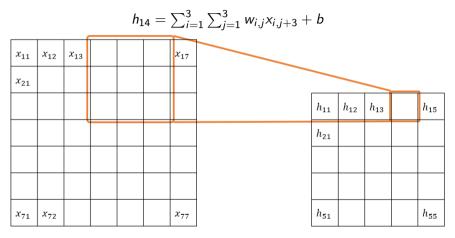


Input X

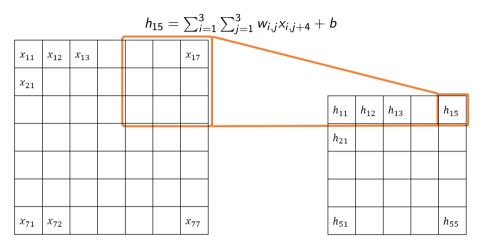
Feature map H



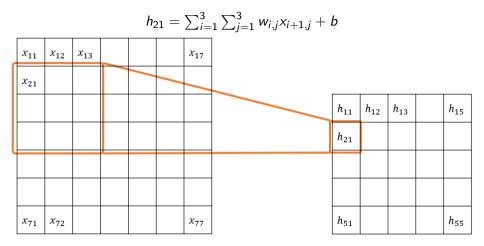
Feature map H



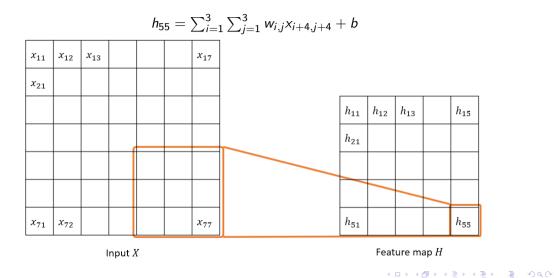
Feature map H



Feature map H



Feature map H



Number of ...

- parameters is $3 \times 3 + 1$ (9 for kernel + 1 for bias)
- \bullet hidden units is 5×5
- \bullet connections is 5 \times 5 \times 3 \times 3

3

イロト イヨト イヨト イヨト

Number of ...

- parameters is $3 \times 3 + 1$ (9 for kernel + 1 for bias)
- $\bullet\,$ hidden units is 5 \times 5
- \bullet connections is $5\times5\times3\times3$

Properties

- Weights (conv kernel) are shared across all hidden units
- Spatial correspondence between pixels and hidden units ("2D matrix of hidden units" = "feature map")
- Translation invariance: extract same features irrespective of where an image patch is located in the input

Image: A math a math

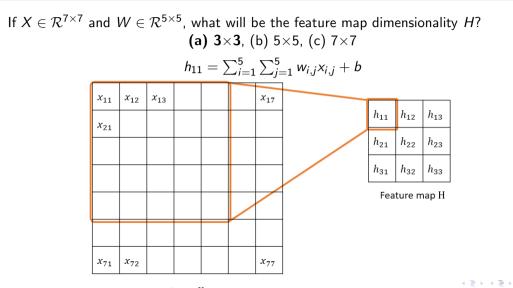
If $X \in \mathcal{R}^{7 \times 7}$ and $W \in \mathcal{R}^{3 \times 3}$, the feature map dimensionality $H \in \mathcal{R}^{5 \times 5}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

If $X \in \mathcal{R}^{7 \times 7}$ and $W \in \mathcal{R}^{5 \times 5}$, what will be the feature map dimensionality *H*? (a) 3×3, (b) 5×5, (c) 7×7

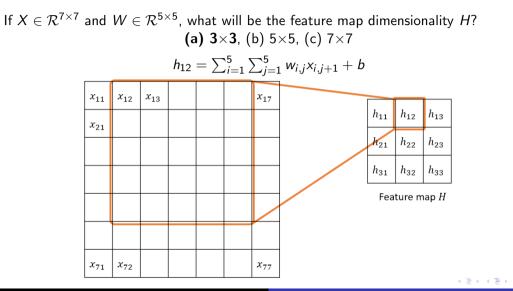
3

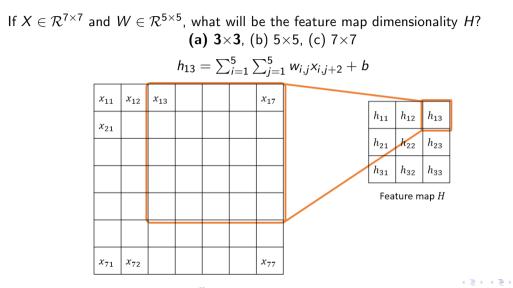
・ロット (雪) (日) (日)



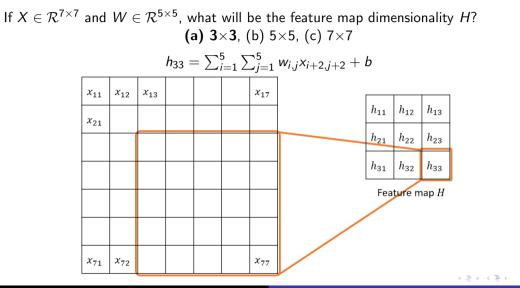
MLP Lecture 7 / 30 October / 6 November 2018 Convolutional Network

э.





э.



Q1. If $X \in \mathcal{R}^{M \times N}$ and $W \in \mathcal{R}^{F \times F}$, what will the output dimensionality be?

MLP Lecture 7 / 30 October / 6 November 2018 Convolutional Network

Q1. If $X \in \mathcal{R}^{M \times N}$ and $W \in \mathcal{R}^{F \times F}$, what will the output dimensionality be? A. $(M - F + 1) \times (N - F + 1)$

MLP Lecture 7 / 30 October / 6 November 2018 Convolutional Networks

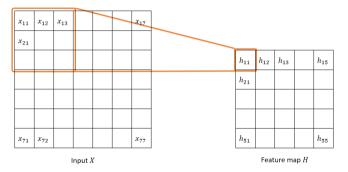
Q1. If $X \in \mathcal{R}^{M \times N}$ and $W \in \mathcal{R}^{F \times F}$, what will the output dimensionality be? A. $(M - F + 1) \times (N - F + 1)$

Q2. Feature map formula?

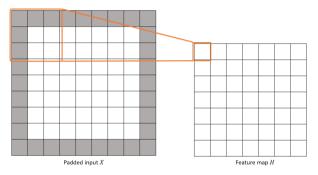
A.
$$h_{ij} = \sum_{k=1}^{F} \sum_{l=1}^{F} w_{k,l} x_{k+i-1,l+j-1} + b$$

メロト (雪) (ヨ) (ヨ) (ヨ) ()

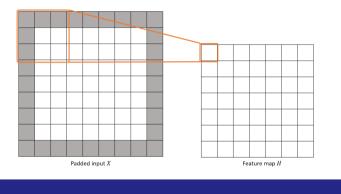
Q. What can we do to get 7×7 feature map size?



Q. What can we do to get 7×7 feature map size?



Q. What can we do to get 7×7 feature map size?



Take-home

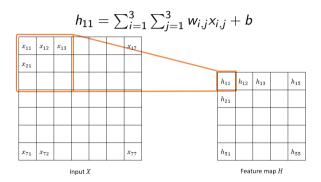
What is feature map size when $X \in \mathcal{R}^{M \times N}$, $W \in \mathcal{R}^{F \times F}$ and padding P?

3

・ロット (雪) (日) (日)

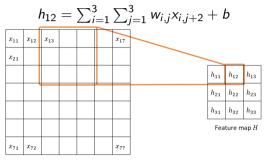
Stride

Q. What if stride (s) is 2?



Stride

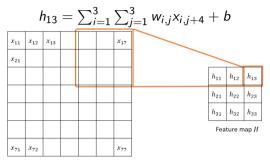
Q. What if stride (s) is 2?



Input X

Stride

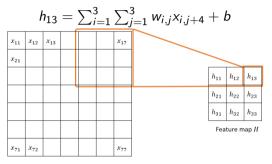
Q. What if stride (s) is 2?



Input X

Stride

Q. What if stride (s) is 2?



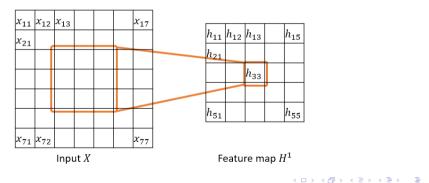
Input X

Take-home

What is feature map size when $X \in \mathcal{R}^{M \times N}$, $W \in \mathcal{R}^{F \times F}$, padding P and stride S?

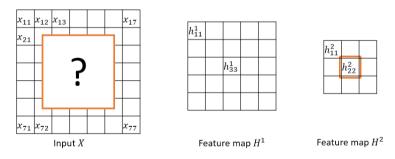
・ コット (雪) ・ (目) ・ (目)

- Biology: The **receptive field** of an individual sensory neuron is the particular region of the sensory space,
- Convolutional networks: The region in the input space that a hidden unit is looking at.



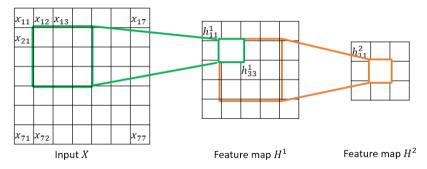
Receptive field

Q. Assume that $X \in \mathcal{R}^{7 \times 7}$, $W^1 \in \mathcal{R}^{3 \times 3}$, $W^2 \in \mathcal{R}^{3 \times 3}$. Receptive field of a hidden unit in second convolutional layer? 3. 5, 6, 7?

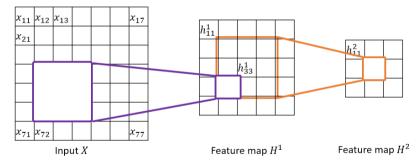


3

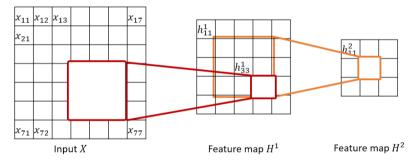
・ロット (雪) (日) (日)

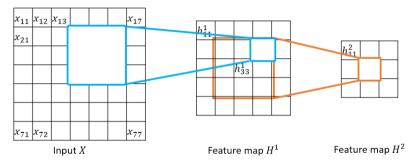


◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─

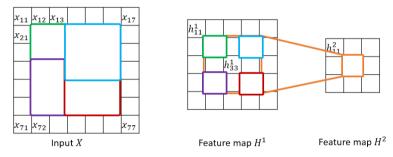


◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─

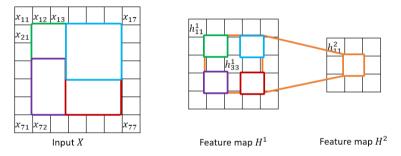




◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─



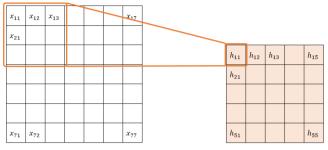
◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─



Q. What would be the receptive field for a hidden unit in an one-layer fully-connected network?

3

Multiple output feature maps

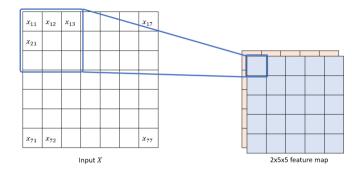


Input X

5x5 feature map

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

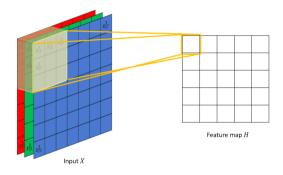
Multiple output feature maps



- # feature maps is $F_{out} = 2$
- # hidden units is $\textit{F}_{\text{out}} \times (5 \times 5)$
- # of parameters is $F_{\text{out}} imes (3 imes 3 + 1)$
- # of connections is $F_{out} \times (5 \times 5 \times 3 \times 3)$

イロト 不得 トイヨト イヨト 二日

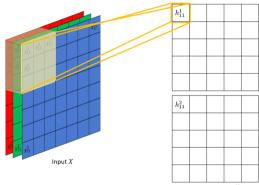
Multiple input feature maps (or input images)



- # input image is $F_{in} = 3$
- # input units is $F_{in} \times 7 \times 7$
- $\bullet~\#$ hidden units is 5×5
- # parameters is F_{in} × 3 × 3 + 1 for bias (F_{in} × 3 × 3 + 1)
- # connections is $F_{in} \times 5 \times 5 \times 3 \times 3$
- Typically we do not tie weights across feature maps
- Local receptive fields across multiple input images

イロト イヨト イヨト

Multiple input and output feature maps

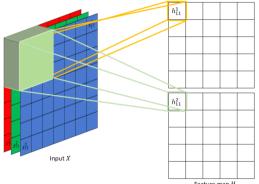


Feature map H

•
$$F_{\rm in} = 3$$
 and $F_{\rm out} = 2$

◆□ > ◆□ > ◆ □ > ◆ □ > □ □ = □

Multiple input and output feature maps



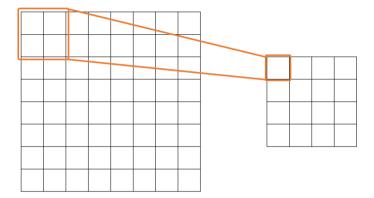
Feature map H

- $F_{in} = 3$ and $F_{out} = 2$
- # input units is $F_{in} \times 7 \times 7$
- # hidden units is $F_{out} \times 5 \times 5$
- # parameters is $F_{in} \times F_{out} \times 3 \times 3 +$ Fout for bias

イロト イヨト イヨト イヨト

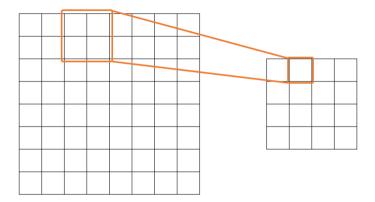
э

Pooling (subsampling)



MLP Lecture 7 / 30 October / 6 November 2018 Convolutional Networ

Pooling (subsampling)



- Similar to convolution, slides over input pixels but no learnable parameters
- Has local receptive field too
- Typical stride S > 1

3

・ロット (雪) (日) (日)

Pooling

- Pooling or subsampling takes a feature map and reduces it in size e.g. by transforming a set of 2x2 regions to a single unit
- Reduces computation time and memory use
- Pooling functions
 - Max-pooling takes the maximum value of the units in the region
 - L_p -pooling take the L_p norm of the units in the region:

$$h' = \left(\sum_{i \in \text{region}} h_i^p\right)^{1/p}$$

• Average- / Sum-pooling – takes the average / sum value of the pool

- Information reduction pooling removes precise location information for a feature
- Apply pooling to each feature map separately

イロン 不通 と イヨン イヨン ニヨー

Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	

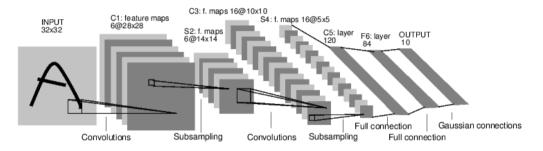
https://en.wikipedia.org/wiki/Kernel_
(image_processing)

- Image kernels have been hand designed and used for feature extraction in image processing (e.g. edge detection)
- Pros: No need for data and training
- Cons 1: Learning filters can be more optimal (minimising network cost function)
- Cons 2: Difficult to design filters for complex tasks (e.g. recognising a cat)
- Automating feature engineering

イロト イボト イヨト イヨト

ъ

Example: LeNet5 (LeCun et al, 1997)

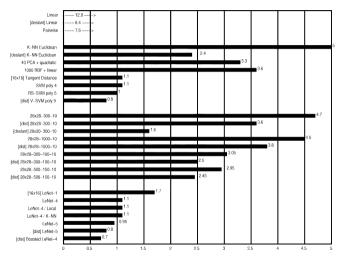


- Convolutional layer (convolution + non-linearity)
- Subsampling (max pooling)
- Final fully connected hidden layer (no weight sharing)
- Softmax output layer

-

イロト イヨト イヨト

MNIST Results (1997)



MLP Lecture 7 / 30 October / 6 November 2018 Convolutional Network

ImageNet Classification ("AlexNet")

Krizhevsky, Sutskever and Hinton, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS'12.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

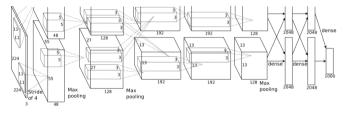


Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264– 4096–4096–1000.

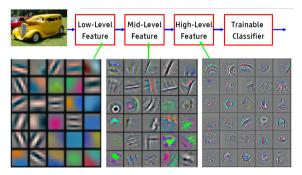
Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

イロト イボト イヨト イヨト

ъ

Hierarchical Representations

$$\mathsf{Pixel} \to \mathsf{edge} \to \mathsf{texton} \to \mathsf{motif} \to \mathsf{part} \to \mathsf{object}$$



Zeiler & Fergus, "Visualizing and Understanding Convolutional Networks", ECCV'14.

https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Slide credits: Lecun & Ranzato

3

イロト イヨト イヨト

- Train convolutional networks with a straightforward but careful application of backprop / SGD
- Exercise: prior to the next lecture, write down the gradients for the weights and biases of the feature maps in a convolutional network. Remember to take account of weight sharing.
- Next lecture: implementing convolutional networks: how to deal with local receptive fields and tied weights, computing the required gradients...

-

イロト イヨト イヨト

Summary

- Convolutional networks include local receptive fields, weight sharing, and pooling leading to:
 - Modelling the spatial structure
 - Translation invariance
 - Local feature detection
- Reading:

Michael Nielsen, Neural Networks and Deep Learning (ch 6)

http://neuralnetworksanddeeplearning.com/chap6.html

Yann LeCun et al, "Gradient-Based Learning Applied to Document Recognition", *Proc IEEE*, 1998.

http://dx.doi.org/10.1109/5.726791

Ian Goodfellow, Yoshua Bengio & Aaron Courville,

Deep Learning (ch 9)

http://www.deeplearningbook.org/contents/convnets.html

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト