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Recap: Fully-connected network for MNIST

hidden layer 1 hidden layer 2 hidden layer 3
input layer

(image from: Michael Nielsen, Neural Networks and Deep Learning,

http://neuralnetworksanddeeplearning.com/chap6.html)

Slide credits: S Renals’ MLP 2017-18
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Fully-connected network for MNIS

On MNIST, we can get about 2% error (or even better) using these kind of networks

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

output layer

~2% error

(image from: Michael Nielsen, Neural Networks and Deep Learning,

http://neuralnetworksanddeeplearning.com/chap6.html)
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How about more complex image recognition tasks?

@ Large variations in position, appearance, shape and size within same object
category

@ Small variations in appearance between different object categories

@ Background clutter and occlusions

@ Typical input image size is 227 x227
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Fully-connected network in high dimension

image credit: Lecun & Ranzato
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Fully-connected network in high dimension

For a 200x200 image and 1000 hidden units
@ # input units is 40,000
) @ # hidden units is 1000
O @ # connections is 40,000,000
O @ 7 parameters is 40,000,000
*
[ ]
[ ]

image credit: Lecun & Ranzato
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Fully-connected network in high dimension

For a 200x200 image and 1000 hidden units
@ # input units is 40,000
@ @ # hidden units is 1000
O @ # connections is 40,000,000
O @ 7 parameters is 40,000,000
*
[ ]
[ ]

Observations:
@ Too many parameters to learn!

@ Spatial (2-D) structure of input image is
ignored

image credit: Lecun & Ranzato @ Neighbour pixels are treated separately
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A closer look at fully connected nets
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21
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Assume that we have
@ 7x7 image X
@ K hidden units
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A closer look at fully connected nets
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A closer look at fully connected nets

XL Wll Wl2 hy
1 2 — 2 2 . .
fan| | w2|w2 |z |= wixu b wixa @ Unroll the input (7x7) into 49-D
+ o+ Wigx77 + b
] ] o Affine parameters W € R*9*K and
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A closer look at fully connected nets

| [ ]
faa| | wa|wdwil | iz
L L @ Connections are dense
- wi w2 wk . . .
— 12« ] @ Hidden unit hy is connected to all
12 Wg| Wg| Wg ) . k

] input units x;; through wjj
|| N @ It does not know that xj; is adjacent
- | = wixgy +wixg, to x12

+ o+ whx, + bR

borg| | wid wh{ Wi
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Convolutional networks

X11 | X12 | X13 X17
X21 hyy | hyp | hys hys
Wi1 | Wiz |Wig hyy
W31 [Wzz | W23
W31 [Waz | W33
Convolution hsq hss
kernel W
X71 | X72 X77 Feature map H
Input X
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Convolutional networks

3 3
hi1 =37, j=1 WijXij+ b

X171 | X12 | X13 ‘\\-KLL__
X21
hip Jhiz | haa his
hyy
X71 | X72 X737 hsy hss
Input X Feature map H
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Convolutional networks

3 3
hio =371 i1 WijXij+1+ b

—

~—]
X11 || ¥12 | *¥13 X
X21
hyg | haz ||has hys
by,
X71 | X72 X77 hsy hss
Input X Feature map H
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Convolutional networks

3 3
hiz =371 i1 WijXij+2 + b

e
X11 | X12 || ¥13 X17
X21
hyg | haz | has hys
haq
X71 | X72 X77 hs, hss
Input X Feature map H
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Convolutional networks

3 3
hia =327 1> i1 wijXij+3+ b

X11 | X12 | X13 X17
X321
hip | iz | s his
hay
X71 | X72 X77 hsy hss
Input X Feature map H
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Convolutional networks

3 3
his =371 > i1 WijXij+a+ b

X11 | X1z | X¥13 *17
X21
hiy | hia | haa his
hay
X71 | X72 X77 hsy hss
Input X Feature map H
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Convolutional networks

3 3
hor =37, j=1 WijXi+1,j t b

X11 | X12 | *13 X17
]
\

%21 \\
hi1 | hyz | a3 hyis
hzy

X71 | %72 X77 hsy hss

Input X Feature map H
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Convolutional networks

3 3
hss = E,‘:1 j=1 Wi jXi+4,j+4 + b

X11 | X12 [ X13 X17
X21
hyp | hao | has his
ha1
F—
‘\\
X71 | X72 X77 hsy hss
Input X Feature map H
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Convolutional networks

@ parameters is 3 x 3+ 1 (9 for kernel 4 1 for bias)
@ hidden unitsis 5 x 5

@ connectionsis 5 x5 x3x 3
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Convolutional networks

@ parameters is 3 x 3+ 1 (9 for kernel 4 1 for bias)
@ hidden unitsis 5 x 5

@ connectionsis 5 x5 x3x 3

@ Weights (conv kernel) are shared across all hidden units

@ Spatial correspondence between pixels and hidden units
("2D matrix of hidden units" ="feature map")

@ Translation invariance: extract same features irrespective of where an image patch
is located in the input
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If X € R7™*7 and W € R3*3, the feature map dimensionality H € R5*>,
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If X € R™7 and W € R®>*>, what will be the feature map dimensionality H?
(a) 3x3, (b) 5x5, (c) 7x7
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If X € R™7 and W € R>*®, what will be the feature map dimensionality H?
(a) 3x3, (b) 5x5, (c) 7x7

hip =304 30 wijxij+ b

-—___-——._.___‘__\
X11 | ¥12 | ¥13 X17
hyy | hiz | has
X21
hay | hag | has
ha1 | haz | has
Pal
/ Feature map H
X71 | X72 X77
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If X € R™7 and W € R>*®, what will be the feature map dimensionality H?
(a) 3x3, (b) 5x5, (c) 7x7

5 5
hio =370 1> 1 WijXij+1+ b

x11 || X12 | X13 o \
hig || haz | has
X21
21 | haz | has
hay | haz | has
Feature map H
X71 | X72 X77
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If X € R™7 and W € R>*®, what will be the feature map dimensionality H?
(a) 3x3, (b) 5x5, (c) 7x7

5 5
hiz =371 71 WijXij+2 + b

X11 | X12 |[ X13 X17
hi1 | haz || has
X21
hyy 22 | has
//
hz1 | h3p | has
Feature map H
X71 | X72 X77
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If X € R™7 and W € R>*®, what will be the feature map dimensionality H?
(a) 3x3, (b) 5x5, (c) 7x7

5 5
haz =270 1D -1 WijXita,j+2 + b

X11 | X12 | ¥13 X17
hi1 | hip | has
X21
| h31 | hyy | s
T ——
hay | haz | haz
Feature map H
X71 | X72 X77

MLP Lecture 7 / 30 October / 6 November 2018



Calculating the output size

Q1. If X € RM*N and W € RF*F, what will the output dimensionality be?
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Calculating the output size

Q1. If X € RM*N and W € RF*F, what will the output dimensionality be?
AAM—-F+1)x(N—-F+1)
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Calculating the output size

Q1. If X € RM*N and W € RF*F, what will the output dimensionality be?
AAM—-F+1)x(N—-F+1)

Q2. Feature map formula?

F F
A hij =3 k1 i1 W Xkti=1 041 1 b
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Input size = feature map size

Q. What can we do to get 7 x 7 feature map size?

X11 | X12 | X13 \\%
X21
hiy Jhiz | s his
hay
X71 | X72 X77 hs1 hss
Input X Feature map H

November 2018
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Padding

Q. What can we do to get 7 x 7 feature map size?

~—

Padded input X Feature map H
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Padding

Q. What can we do to get 7 x 7 feature map size?

~

Padded input X Feature map H

What is feature map size when X € RM*N W e RF*F and padding P?
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Stride

Q. What if stride (s) is 27

3 3
by =327 2 wijxij+ b

X11 | X12 | X13 \\“K‘k
X21
hiy | hiz | has his
hay
X71 | X72 X77 hsy hss
Input X Feature map H
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Stride

Q. What if stride (s) is 27

3 3
hio =371 D i1 WijXijt2 + b

X11 | X12 || X13 X17

X21
hyy | hiz | has
hay | oz | haz
hsy | haz | haz
Feature map H

X71 | X72 X77

Input X
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Stride

Q. What if stride (s) is 27

hz =37,

3
j=1 Wi jXij+a + b

MLP Lecture 7 /

X11 | X12 | X13 X17

X21
My | haz | has
ha1 | haz | haz
hsy | sz | hsz
Feature map H

X71 | X72 X77

Input X
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de

Q. What if stride (s) is 27

3 3
bz =371 > i1 WijXij+a + b

X11 | X12 | X13 X17

X21
hag | hip | ha
ha1 | haz | haz
hay | haz | haz
Feature map H

X71 | X72 X77

Input X

What is feature map size when X € RM*N W e RF*F padding P and stride S?
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Receptive field

@ Biology: The receptive field of an individual sensory neuron is the particular
region of the sensory space,

@ Convolutional networks: The region in the input space that a hidden unit is

looking at.
X11 |12 X13 17
x fyq (115 [ya s
21
[——lh
N5
//
hsy hss
X71 K72 77
Input X Feature map H*
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Receptive field

Q. Assume that X € R7*7, Wl e R3*3, W2 ¢ R3*x3,
Receptive field of a hidden unit in second convolutional layer?
3,5 6,77

11 [X12 [X13 X17

1
hll

X21

2
hiy

? h% 3 h% 2

Input X Feature map H' Feature map H?
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Receptive field

Receptive field of a hidden unit in second convolutional layer?

X11 [X12 13 X17 ]
| |
21 —
12 | }
u— |
_/ }1%3
/——__ |
|
71 [X72 X77
2
Input X Feature map H* Feature map H
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Receptive field

Receptive field of a hidden unit in second convolutional layer?

X11 K12 [X13 X17
hl
11
21 -
\ 2 }
— his
— ‘
|
71 72 | ’ X77
Input X Feature map H?! Feature map H?
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Receptive field

Receptive field of a hidden unit in second convolutional layer?

X11 X12 [X13 17 "
bt e hiy
[ ——— h%a
I
X71 X72 I | | X77
Input X Feature map H* Feature map H?
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Receptive field

Receptive field of a hidden unit in second convolutional layer?

\ 2

11 [X12 Y13 ’ | | X17 1
21 ==
/""  |has
K71 (K72 X77
Input X Feature map H*
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Receptive field

Receptive field of a hidden unit in second convolutional layer?

Y11 [X12 |x13 ‘ | | X17
] ] | ]
= \ 2
| B hi,
71 X72 | \ | | X77
Input X Feature map H* Feature map H?
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Receptive field

Receptive field of a hidden unit in second convolutional layer?

X11 [X12 |x1a ‘ | | X17
] HEEN
2 \ 2
| | his
| B —
X71 X72 \ | | X77
Input X Feature map H* Feature map H?

Q. What would be the receptive field for a hidden unit in an one-layer fully-connected network?
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Multiple output feature maps

X11 | X12 | X13 \\%
X21
hiy | Rz | has his
ha1
X71 | X72 X77 hsy hss
Input X 5x5 feature map
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Multiple output feature maps

F—
X11 | X12 | X13 T~—X17

Input X 2x5x5 feature map

# feature maps is Four = 2

# hidden units is Fou x (5 x 5)

# of parameters is Fout X (3 X 3+ 1)

# of connections is Fout X (5 x5 x 3 x 3)
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Multiple input feature maps (or input images)

@ # input image is Fj, = 3
@ # input unitsis Fjp, X 7 X 7
@ # hidden unitsis 5 x5

@ # parameters is F, x 3 x 3 + 1 for
bias (Fin x 3 x 3 + 1)

@ £ connections is Fj, x 5 x5 x3x 3

@ Typically we do not tie weights across
feature maps

Feature map H

Input X

@ Local receptive fields across multiple
input images
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Multiple input and output feature maps

Input X

1
hiy

2
hiy

Feature map H
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Multiple input and output feature maps

1
hiy

o f,=3and Fout =2
@ # input unitsis Fj, X 7 x 7
12, @ # hidden units is Fou X 5 x5

@ # parameters is Fi, X Four X 3 x 3 +
Fout for bias

Input X

Feature map H
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Pooling (subsampling)
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Pooling (subsampling)

@ Similar to convolution, slides over input pixels but no learnable parameters
@ Has local receptive field too
@ Typical stride S > 1
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@ Pooling or subsampling takes a feature map and reduces it in size — e.g. by
transforming a set of 2x2 regions to a single unit

@ Reduces computation time and memory use
@ Pooling functions

e Max-pooling — takes the maximum value of the units in the region
o Lp-pooling — take the L, norm of the units in the region:

1/p

W=1{ >
icregion
o Average- / Sum-pooling — takes the average / sum value of the pool
@ Information reduction — pooling removes precise location information for a feature

@ Apply pooling to each feature map separately
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Learning image kernels

o Image kernels have been hand
designed and used for feature
extraction in image processing
(e.g. edge detection)

Identity

—_—
coo
oo

@ Pros: No need for data and
training

. @ Cons 1: Learning filters can be

0 10
Edge detection 1 -4 1

-1 -1 -1
-1 8 -1
-1 -1 -1
0 -1 0
Sharpen [—1 5 —]:|
0 -1 0

https://en.wikipedia.org/wiki/Kernel_

more optimal (minimising network
cost function)

@ Cons 2: Difficult to design filters
for complex tasks (e.g.
recognising a cat)

o Automating feature engineering
(image_processing)
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Example: LeNet5 (LeCun et al, 1997)

C1: feature maps
INPUT E@2B:28

S2: 1. maps
G@i14xi14

|
| | Fullcmr#ecﬂan | Gaussian connections
Convolutions Subsampling Corwvolutions  Subsampling Full connection

Convolutional layer (convolution + non-linearity)
Subsampling (max pooling)

Final fully connected hidden layer (no weight sharing)
Softmax output layer
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MNIST Results

1997

Linear
(deslan] Linear
Painvise

K-NN Euciidean
[deslant] K-NN Euclidean
40 PCA + quadralic

1000 RBF +linear
[16x16) Tangen! Distance
SVM poly 4
S-SVM poly 5
[dist] V-SVM poly 9

26128-300-10

[dist] 26x26-300-10
[deslant] 20x20-300-10
28¢28-1000-10

111

11

(dist 28x28-1

(dist 28128 1
28x28-500-150-10
(dist) 28x28-500-160-10

[16x16] LeNet-1
LeNet-4
LeNet-4 / Local
LeNet-4 / K-NN
LeNet-5

(dist] LeNet-5
(dist Boosted LeNet-4

11

11

— ¢
—

095




ImageNet Classification (“AlexNet”)

Krizhevsky, Sutskever and Hinton, “ImageNet Classification with Deep Convolutional
Neural Networks™, NIPS'12.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

oas' 20ag \dense

157 152 128 Max
Max 8 Max pooling
pooling pooling

2048 2048

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities I Model Top-1 Top-5 I
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts Spa rse coding [2] | 47.1% 28.2%
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and

the number of neurons in the network’s remaining layers is given by 253,440-186,624-64,896-64,896-43,264— SIFT + FVs [24] 4;' 73{7 f,'; -7%
4096-4096-1000. CNN 37.5% 0%
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Hierarchical Representations

Pixel — edge — texton — motif — part — object

Low-Level Mid-Level| |High-Level| Trainable
et pts —
Feature Feature Feature Classifier
" A\

Zeiler & Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV'14.
https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Slide credits: Lecun & Ranzato
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Training Convolutional Networks

@ Train convolutional networks with a straightforward but careful application of
backprop / SGD

@ Exercise: prior to the next lecture, write down the gradients for the weights and
biases of the feature maps in a convolutional network. Remember to take account
of weight sharing.

@ Next lecture: implementing convolutional networks: how to deal with local
receptive fields and tied weights, computing the required gradients...
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@ Convolutional networks include local receptive fields, weight sharing, and pooling
leading to:

o Modelling the spatial structure

e Translation invariance

o Local feature detection

@ Reading:

Michael Nielsen, Neural Networks and Deep Learning (ch 6)
http://neuralnetworksanddeeplearning.com/chap6.html
Yann LeCun et al, “Gradient-Based Learning Applied to Document Recognition”,
Proc IEEE, 1998.
http://dx.doi.org/10.1109/5.726791
lan Goodfellow, Yoshua Bengio & Aaron Courville,
Deep Learning (ch 9)
http://www.deeplearningbook.org/contents/convnets.html
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