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Recap: Gradient descent for a single-layer network
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Stochastic Gradient Descent (SGD)

Training by batch gradient descent is very slow for large training data sets

The algorithm sums the gradients over the entire training set before making an
update
Since the update steps (η) are small, many updates are needed

Solution: Stochastic Gradient Descent (SGD)

In SGD the complete gradient ∂E/∂wki (obtained by averaging over the entire
training dataset) is approximated by the gradient for a point ∂En/∂wki

The weights are updated after each training example rather than after the batch
of training examples

Inaccuracies in the gradient estimates are washed away by the many
approximations

Present the training set in random order, to prevent multiple similar data points
(with similar gradient approximation inaccuracies) appearing in succession
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SGD Pseudocode (linear network)

1: procedure SGDTraining(X ,T ,W )
2: initialize W to small random numbers
3: randomize order of training examples in X
4: while not converged do
5: for n← 1,N do
6: for k ← 1,K do
7: yn

k ←
∑d

i=1 wkix
n
i + bk

8: gn
k ← yn

k − tnk
9: for i ← 1, d do

10: wki ← wki − η · gn
k · xni

11: end for
12: bk ← bk − η · gn

k

13: end for
14: end for
15: end while
16: end procedure
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Minibatches

Batch gradient descent – compute the gradient from the batch of N training
examples

Stochastic gradient descent – compute the gradient from 1 training example each
time

Intermediate – compute the gradient from a minibatch of M training examples –
M > 1, M << N

Benefits of minibatch:

Computationally efficient by making best use of vectorisation, keeping processor
pipelines full – can parallelise the forward prop and gradient computations by
processing examples in a minibatch together
Possibly smoother convergence as the gradient estimates are less noisy than using a
single example each time
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SGD Pseudocode (linear network)
How would you modify this code for minibatch training?

1: procedure SGDTraining(X ,T ,W )
2: initialize W to small random numbers
3: randomize order of training examples in X
4: while not converged do
5: for n← 1,N do
6: for k ← 1,K do
7: yn

k ←
∑d

i=1 wkix
n
i + bk

8: gn
k ← yn

k − tnk
9: for i ← 1, d do

10: wki ← wki − η · gn
k · xni

11: end for
12: bk ← bk − η · gn

k

13: end for
14: end for
15: end while
16: end procedure

MLP Lecture 2 / 25 September 2018 Single Layer Networks (2) 6
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Classification
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MNIST Digit Classification
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Classification and Regression

Regression: predict the value of the output given an example input vector - e.g.
what will be tomorrow’s rainfall (in mm)

Classification: predict the category given an example input vector – e.g. will it
be rainy tomorrow (yes or no)?

Classification outputs:

Binary: 1 (yes) or 0 (no)
Probabilistic: p, 1− p (for a 2-class problem)

One could train a linear single layer network as a classifier:

Output targets are 1/0 (yes/no)
At run time if the output y > 0.5 classify as yes, otherwide classify as no

This will work, but we can do better....

Constrain the outputs to binary or probabilistic using an activation function on
the output unit
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Activation functions for two-class classification

+

f
Output: y

Linear
Layer: z

Input: x

y = f(z)

z = wT x + b

Single-layer network, binary/sigmoid output

Binary (step function): f (z) =

{
1 if z ≥ 0.5

0 if z < 0.5

Probabilistic (logistic sigmoid function): f (z) =
1

1 + exp(−z)
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Logistic sigmoid function
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Logistic sigmoid activation function   g(a) = 1/(1+exp(−a))
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Sigmoid single layer networks

Binary output: activation is not differentiable. Can use perceptron learning to
train binary output single layer networks

Probabilistic output: single layer network with logistic sigmoid output –
statisticians would call this logistic regression.

Let z be the value of the weighted sum of inputs, before the activation function,
so:

z =
∑

i

wixi + b = wᵀx + b

y = f (z)

Two classes, so single output y , with weights w
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Sigmoid single layer networks

Training sigmoid single layer network: Gradient descent requires ∂E/∂wi for all
weights:

∂En

∂wi
=
∂En

∂yn
∂yn

∂zn
∂zn

∂wi

For a sigmoid:

y = f (z)
dy

dz
= f ′(z) = f (z)(1− f (z))

Therefore gradients of the error w.r.t. weights and bias (grads wrt params):

∂En

∂wi
= (yn − tn)︸ ︷︷ ︸

error.grad

f (zn)(1− f (zn))︸ ︷︷ ︸
f ′(zn)

xni

∂En

∂b
= (yn − tn)f (zn)(1− f (zn))
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Applying gradient descent to a sigmoid single-layer network

f
+ w4

xn
1

xn
2 xn

3 xn
4 xn

5

yn = f(zn); zn =
5X

i=1

wix
n
i + b

@En

@w4
= (yn � tn) yn(1� yn)| {z }

f 0(zn)
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Cross-entropy error function (1)

If we use a sigmoid single layer network for a two class problem (C1 (target t = 1)
and C2 (t = 0)), then we can interpret the output as follows

y ∼ P(C1 | x) = P(t = 1 | x ; W )

(1− y) ∼ P(C2 | x) = P(t = 0 | x ; W )

Combining, and recalling the target is binary

P(t | x ; W ) = y t · (1− y)1−t

This is a Bernoulli distribution. We can write the log probability:

lnP(t | x ; W ) = t ln y + (1− t) ln(1− y)
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Cross-entropy error function (2)

Optimise the weights W to maximise the log probability – or to minimise the
negative log probability.

En = − lnP(tn | xn; W ) = −(tn ln yn + (1− tn) ln(1− yn)) .

This is called the cross-entropy error function

Require grads wrt params for gradient descent training: ∂E/∂wi

(wi connects the ith input to the single output).

∂E

∂y
= − t

y
+

1− t

1− y
=
−(1− y)t + y(1− t)

y(1− y)
=

(y − t)

y(1− y)

∂E

∂wi
=
∂E

∂y
· ∂y
∂z
· ∂z
∂wi

=
(y − t)

y(1− y)
· y(1− y) · xi = (y − t)xi

Derivative of the sigmoid y(1− y) cancels.
Exercise: What is the gradient for the bias (∂E∂b )?
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Multi-class networks

If we have K classes, then use a “one-from-K” (“one-hot”) output coding –
target of the correct class is 1, all other targets are 0

It is possible to have a multi-class net with sigmoids

f
+

x1 x2 x3 x4 x5

f
+

f
+

class  1 class  2 class  3
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Multi-class networks

If we have K classes use a “one-hot” (“one-from-N”) output coding – target of
the correct class is 1, all other targets are zero

It is possible to have a multi-class net with sigmoids

This will work... but we can do better

Using multiple sigmoids for multiple classes means that the outputs of the
network are not constrained to sum to one

To interpret the outputs of the net as class probabilities, require
∑

k P(Ck |x) = 1

Solution – use an output activation function with a sum-to-one constraint:
softmax
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Softmax

yk =
exp(zk)

∑K
j=1 exp(zj)

zk =
d∑

i=1

wkixi + bk

This form of activation has the following properties

Each output will be between 0 and 1
The denominator ensures that the K outputs will sum to 1

Using softmax we can interpret the network output ynk as an estimate of P(Ck |xn)

Softmax is the multiclass version of the two-class sigmoid – as sigmoid models a
Bernoulli distribution, so softmax models a Multinoulli (Categorical) distribution
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Softmax – Training (1)

We can extend the cross-entropy error function to the multiclass case

En = − lnP(C`n |xn)) = −
C∑

k=1

tnk ln ynk

where C`n is the correct class for example n: (tn`n = 1).

Computing grads wrt params:

∂En

∂wki
=

C∑

c=1

∂E

∂yc
· ∂yc
∂zk
· ∂zk
∂wki

=
C∑

c=1

− tc
yc
· ∂yc
∂zk
· xi

∂En

∂bk
=

C∑

c=1

∂E

∂yc
· ∂yc
∂zk
· ∂zk
∂bk

=
C∑

c=1

− tc
yc
· ∂yc
∂zk
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Softmax – Training (2)

Note that the kth output unit – and hence the weight wki – influences the error
function through all the output units, because of the normalising term in the
denominator. We have to take this into account when differentiating.

If you do the differentiation you will find:

∂yc
∂zk

= yc(δck − yk)

Where δck is called the Kronecker delta: δck = 1 if c = k , δck = 0 if c 6= k

We can put it all together to obtain grads wrt params:

∂En

∂wki
= (ynk − tnk )xni

∂En

∂bk
= (ynk − tnk )

Softmax output with cross-entropy error function results in gradients with the
same form as for linear outputs with mean square error!
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Exercises

1 Modify the SGD pseudocode for sigmoid outputs

2 Modify the SGD pseudocode for softmax outputs

3 For softmax and cross-entropy error, show that

∂En

∂wki
= (ynk − tnk )xni

(use the quotient rule of differentiation, and the fact that
∑K

c=1 tcyk = yk
because of 1-from-K coding of the target outputs)
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Summary

Reading:

Nielsen chapter 1
Goodfellow et al sections 5.9, 6.1, 6.2, 8.1

Stochastic gradient descent (SGD) and minibatch

Classification and regression

Sigmoid activation function and cross-entropy

Multiple classes – Softmax

Next lecture: multi-layer networks and hidden units
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