Single Layer Networks (2)

Stochastic gradient descent; Classification

Steve Renals

Machine Learning Practical — MLP Lecture 2
25 September 2018
http://www.inf.ed.ac.uk/teaching/courses/mlp/

MLP Lecture 2 / 25 September 2018

http://www.inf.ed.ac.uk/teaching/courses/mlp/

Single Layer Networks

MLP Lecture 2 / 25 September 2018 Single Layer Networks (2)

Recap: Gradient descent for a single-layer network

° (1) fprop
Y2 = ZUJ%%:
i=1

(2) error

(3) error_grad

(4) grads_wrt_params

n=1

Stochastic Gradient Descent (SGD)

@ Training by batch gradient descent is very slow for large training data sets
e The algorithm sums the gradients over the entire training set before making an
update
o Since the update steps (1) are small, many updates are needed

MLP Lecture 2 / 25 September 2018

Stochastic Gradient Descent (SGD)

@ Training by batch gradient descent is very slow for large training data sets

e The algorithm sums the gradients over the entire training set before making an
update
o Since the update steps (1) are small, many updates are needed

@ Solution: Stochastic Gradient Descent (SGD)

@ In SGD the complete gradient OE /Owy; (obtained by averaging over the entire
training dataset) is approximated by the gradient for a point 9E" /0wy

@ The weights are updated after each training example rather than after the batch
of training examples

MLP Lecture 2 / 25 September 2018

Stochastic Gradient Descent (SGD)

@ Training by batch gradient descent is very slow for large training data sets

e The algorithm sums the gradients over the entire training set before making an
update
o Since the update steps (1) are small, many updates are needed

@ Solution: Stochastic Gradient Descent (SGD)

@ In SGD the complete gradient OE /Owy; (obtained by averaging over the entire
training dataset) is approximated by the gradient for a point 9E" /0wy

@ The weights are updated after each training example rather than after the batch
of training examples

@ Inaccuracies in the gradient estimates are washed away by the many
approximations

@ Present the training set in random order, to prevent multiple similar data points
(with similar gradient approximation inaccuracies) appearing in succession

MLP Lecture 2 / 25 September 2018

SGD Pseudocode (linear network)

1: procedure SGDTRAINING(X, T, W)

2 initialize W to small random numbers
3 randomize order of training examples in X
4: while not converged do

5: for n< 1, N do

6: for k <+ 1,K do

7 yi e S0 wiax! + by

8 8k YKk — &

9: for i+ 1,d do
10: Wij <= Wij — 1 - 8 X['
11: end for
12: bk%bk777~g£
13: end for
14: end for

15: end while
16: end procedure

MLP Lecture 2 / 25 September 2018

SGD Pseudocode (linear network)

1: procedure SGDTRAINING(X, T, W)

2 initialize W to small random numbers
3 randomize order of training examples in X
4: while not converged do

5: for n< 1, N do

6: for k <+ 1,K do

7 i S0 wiax! + by

8 8k <YKk — W

9: for i+ 1,d do
10: Wii < Wi — 1) - 8¢ * X[
11: end for
12: bk<—bk—n-g,'(’
13: end for
14: end for

15: end while
16: end procedure

MLP Lecture 2 / 25 September 2018

@ Batch gradient descent — compute the gradient from the batch of N training
examples

@ Stochastic gradient descent — compute the gradient from 1 training example each
time

@ Intermediate — compute the gradient from a minibatch of M training examples —
M>1 M<<N

MLP Lecture 2 / 25 September 2018

@ Batch gradient descent — compute the gradient from the batch of N training
examples

@ Stochastic gradient descent — compute the gradient from 1 training example each
time

@ Intermediate — compute the gradient from a minibatch of M training examples —
M>1 M<<N

o Benefits of minibatch:

e Computationally efficient by making best use of vectorisation, keeping processor
pipelines full — can parallelise the forward prop and gradient computations by
processing examples in a minibatch together

e Possibly smoother convergence as the gradient estimates are less noisy than using a
single example each time

MLP Lecture 2 / 25 September 2018

SGD Pseudocode (linear network)

1: procedure SGDTRAINING(X, T, W)

2 initialize W to small random numbers
3 randomize order of training examples in X
4: while not converged do

5: for n< 1, N do

6: for k <+ 1,K do

7 yi e S0 wiax! + by

8 8k YKk — &

9: for i+ 1,d do
10: Wij <= Wij — 1 - 8 X['
11: end for
12: bk%bk777~g£
13: end for
14: end for

15: end while
16: end procedure

MLP Lecture 2 / 25 September 2018

SGD Pseudocode (linear network
How would you modify this code for minibatch training?

1: procedure SGDTRAINING(X, T, W)

2 initialize W to small random numbers
3 randomize order of training examples in X
4 while not converged do

5: for n«+ 1, N do

6: for k +— 1,K do

7 vi e S0 wiix? + by

8 - T

0: for i+ 1,d do
10: Wki <= Wikj — 1 - 8 * X[
11: end for
12: b < bk —n- g}
13: end for
14: end for

15: end while
16: end procedure

MLP Lecture 2 / 25 September 2018

SGD Pseudocode (linear network
How would you vectorise this code?

1: procedure SGDTRAINING(X, T, W)

2 initialize W to small random numbers
3 randomize order of training examples in X
4 while not converged do

5: for n«+ 1, N do

6: for k +— 1,K do

7 yi e S0 wiix? + by

8 - T

0: for i+ 1,d do
10: Wki <= Wikj — 1 - 8 * X[
11: end for
12: b < bk —n- g}
13: end for
14: end for

15: end while
16: end procedure

MLP Lecture 2 / 25 September 2018

Classification

MLP Lecture 2 / 25 September 2018 Single Layer Networks (2)

=
(©]
B
Q]
=
(S
‘0
w0
s
)
=
.20
a
_I
2.
=
=

Q—ONMIX U fre S
Q—bMmTIT WS Mo
O~@c> NN~ o
O~ NI 0
V=N FFe ~W o
O ~-NOTWVWS koo o
Q—xM YL Qg
=T b 0o
QA MITIWVS rw Jd
O—=CEmMmT NI NI o
O~ T W 0o
Q~Q TV N0~
Q—-—(en>rinS oo o
Q~dmm>\vv oo
D —(FMJ N e
R —% T \n9 % ™
D~ T oo NDT
O—=ad N TS > >
O-~N I ™~y
O~ DT HPONY &

Classification and Regression

@ Regression: predict the value of the output given an example input vector - e.g.
what will be tomorrow's rainfall (in mm)

MLP Lecture 2 / 25 September 2018

Classification and Regression

@ Regression: predict the value of the output given an example input vector - e.g.
what will be tomorrow's rainfall (in mm)
o Classification: predict the category given an example input vector — e.g. will it
be rainy tomorrow (yes or no)?
o Classification outputs:
o Binary: 1 (yes) or 0 (no)
o Probabilistic: p, 1 — p (for a 2-class problem)

MLP Lecture 2 / 25 September 2018

Classification and Regression

@ Regression: predict the value of the output given an example input vector - e.g.
what will be tomorrow's rainfall (in mm)

o Classification: predict the category given an example input vector — e.g. will it
be rainy tomorrow (yes or no)?
o Classification outputs:
o Binary: 1 (yes) or 0 (no)
o Probabilistic: p, 1 — p (for a 2-class problem)
@ One could train a linear single layer network as a classifier:
o Output targets are 1/0 (yes/no)
o At run time if the output y > 0.5 classify as yes, otherwide classify as no
@ This will work, but we can do better....
@ Constrain the outputs to binary or probabilistic using an activation function on

the output unit

MLP Lecture 2 / 25 September 2018

Activation functions for two-class classification

Single-layer network, binary/sigmoid output

1 if z>0.5
Bi step function): f(z) = -
inary (step) 1) {o if 2 < 0.5

1
Probabilistic (logistic sigmoid function): {f(z) = 1+exp(—z)}

MLP Lecture 2 / 25 September 2018

Logistic sigmoid function

Logistic sigmoid activation function g(a) = 1/(1+exp(-a))

MLP Lecture 2 5 September 2018

Sigmoid single layer networks

@ Binary output: activation is not differentiable. Can use perceptron learning to
train binary output single layer networks

MLP Lecture 2 / 25 September 2018

Sigmoid single layer networks

@ Binary output: activation is not differentiable. Can use perceptron learning to
train binary output single layer networks

@ Probabilistic output: single layer network with logistic sigmoid output —
statisticians would call this logistic regression.

Let z be the value of the weighted sum of inputs, before the activation function,
So:

Z:ZW,-X,-—i—b:wa—i-b

y = f(2)

@ Two classes, so single output y, with weights w

MLP Lecture 2 / 25 September 2018 12

Sigmoid single layer networks

e Training sigmoid single layer network: Gradient descent requires OE /Ow; for all

weights:
OE" OE" 0y" 0z"
ow; Jy" 9z" Ow;

For a sigmoid: J
y="fz2) <L =f(2)=f(2)1-F)

MLP Lecture 2 / 25 September 2018

Sigmoid single layer networks

e Training sigmoid single layer network: Gradient descent requires OE /Ow; for all
weights:
OE" OE" 0y" 0z"
ow; Jy" 9z" Ow;

For a sigmoid:

y=f2) Y =F2)=f2)1 - F(2))

dz
@ Therefore gradients of the error w.r.t. weights and bias (grads_wrt_params):
aEn n n n n n
aw, | = " =) (2N (A - F(27) xi
! N—— ~~
error.grad f'(z")
OE"

o = ("~ (- (")

MLP Lecture 2 / 25 September 2018

Applying gradient descent to a sigmoid single-layer network

5
f(z"); 2" = Zwix? +b
i=1

MLP Lecture 2 / 25 September 2018

Cross-entropy error function (1)

e If we use a sigmoid single layer network for a two class problem (C; (target t = 1)
and G, (t =0)), then we can interpret the output as follows

y~P(CG |x)=P(t=1]x;, W)
(L=y)~P(G | x) = P(t =0 x; W)

MLP Lecture 2 / 25 September 2018

Cross-entropy error function (1)

e If we use a sigmoid single layer network for a two class problem (C; (target t = 1)
and G, (t =0)), then we can interpret the output as follows

y~P(CG |x)=P(t=1]x;, W)
(L=y)~P(G | x) = P(t =0 x; W)

@ Combining, and recalling the target is binary
P(t|x;W)=y" - (1-y)'*
This is a Bernoulli distribution. We can write the log probability:

InP(t | x; W) =tlny+(1—t)In(1—y)

MLP Lecture 2 / 25 September 2018

Cross-entropy error function (2)

@ Optimise the weights W to maximise the log probability — or to minimise the
negative log probability.

E" = —InP(t" [x", W) = —(t"Iny" + (1 — t")In(1 — y")) .

This is called the cross-entropy error function

MLP Lecture 2 / 25 September 2018

Cross-entropy error function (2)

@ Optimise the weights W to maximise the log probability — or to minimise the
negative log probability.

E" = —InP(t" [x", W) = —(t"Iny" + (1 — t")In(1 — y")) .

This is called the cross-entropy error function
@ Require grads_wrt_params for gradient descent training: OE /Ow;
(w; connects the ith input to the single output).

OE t 1-t —(1-y)t+y(l-t) (yv—1t)

dy y 1-y y(1—y) Cy(l-y)
OE _O0E Oy 0z (y—t)

ow; |~ ay 0z ow; y(l—y)

Derivative of the sigmoid y(1 — y) cancels.
Exercise: What is the gradient for the bias ()7

y(l—y) -x = (y —t)x

MLP Lecture 2 / 25 September 2018 16

Multi-class networks

o If we have K classes, then use a “one-from-K" (“one-hot”) output coding —
target of the correct class is 1, all other targets are 0

@ It is possible to have a multi-class net with sigmoids

class 1 class 2 class 3

MLP Lecture 2 / 25 September 2018

Multi-class networks

e If we have K classes use a “one-hot" (“one-from-N") output coding — target of
the correct class is 1, all other targets are zero

@ It is possible to have a multi-class net with sigmoids

@ This will work... but we can do better

MLP Lecture 2 / 25 September 2018

Multi-class networks

e If we have K classes use a “one-hot" (“one-from-N") output coding — target of
the correct class is 1, all other targets are zero

@ It is possible to have a multi-class net with sigmoids

@ This will work... but we can do better

@ Using multiple sigmoids for multiple classes means that the outputs of the
network are not constrained to sum to one

e To interpret the outputs of the net as class probabilities, require ", P(Cy|x) =1

@ Solution — use an output activation function with a sum-to-one constraint:
softmax

MLP Lecture 2 / 25 September 2018 18

~exp(z)
K=K
Zj:l exp(z))
d
2z = Z Wi Xi + by
i=1

@ This form of activation has the following properties

e Each output will be between 0 and 1
o The denominator ensures that the K outputs will sum to 1

MLP Lecture 2 / 25 September 2018

_exp(z)
Yk =Sk N
Zj:l exp(z))

d

Z = E Wi X; + by
i—1

@ This form of activation has the following properties

e Each output will be between 0 and 1
o The denominator ensures that the K outputs will sum to 1

@ Using softmax we can interpret the network output y; as an estimate of P(Cy|x")

@ Softmax is the multiclass version of the two-class sigmoid — as sigmoid models a
Bernoulli distribution, so softmax models a Multinoulli (Categorical) distribution

MLP Lecture 2 / 25 September 2018 19

Softmax — Training (1)

@ We can extend the cross-entropy error function to the multiclass case

C

E"=—InP(Cp|x")) == tilnyf
k=1

where Cyn is the correct class for example n: (t;, = 1).

MLP Lecture 2 / 25 September 2018

Softmax — Training (1)

@ We can extend the cross-entropy error function to the multiclass case

c
E"=—InP(Cp|x")) == tilnyf
k=1
where Cyn is the correct class for example n: (t;, = 1).

o Computing grads_wrt_params:

OE™ _ZC:aE dye Oz _i_tc oy
Owgi _c:1 Oye Oz Owy — Ve 0z,
OE" _iaE dye azk_i_tc dye
Oby _C:1 Oy Oz Obx Ye Oz

MLP Lecture 2 / 25 September 2018

Softmax — Training (2)

@ Note that the kth output unit — and hence the weight wy; — influences the error
function through all the output units, because of the normalising term in the
denominator. We have to take this into account when differentiating.

MLP Lecture 2 / 25 September 2018

Softmax — Training (2)

@ Note that the kth output unit — and hence the weight wy; — influences the error
function through all the output units, because of the normalising term in the
denominator. We have to take this into account when differentiating.

@ If you do the differentiation you will find:

Oye _
62[(.y Cc

Where 6 is called the Kronecker delta: 6o = 1if c =k, 0ok =0if c # k
@ We can put it all together to obtain grads_wrt_params:

(Ock — Yk)

OE" OE"

o | = ORI G = -)

Softmax output with cross-entropy error function results in gradients with the
same form as for linear outputs with mean square error!

MLP Lecture 2 / 25 September 2018 21

Exercises

@ Modify the SGD pseudocode for sigmoid outputs
@ Modify the SGD pseudocode for softmax outputs
© For softmax and cross-entropy error, show that

OE"
Owe = (vk — te)x

(use the quotient rule of differentiation, and the fact that S5 t.y = yi
because of 1-from-K coding of the target outputs)

MLP Lecture 2 / 25 September 2018

o Reading:
o Nielsen chapter 1
o Goodfellow et al sections 5.9, 6.1, 6.2, 8.1

Stochastic gradient descent (SGD) and minibatch
Classification and regression

Sigmoid activation function and cross-entropy
Multiple classes — Softmax

Next lecture: multi-layer networks and hidden units

MLP Lecture 2 / 25 September 2018

