
Recurrent neural networks
Modelling sequential data

MLP Lecture 9 Recurrent Neural Networks 1: Modelling sequential data 1

Recurrent Neural Networks 1: Modelling sequential data

Steve Renals

Machine Learning Practical — MLP Lecture 9
15 November 2017 / 20 November 2017

MLP Lecture 9 Recurrent Neural Networks 1: Modelling sequential data 2

Sequential Data

We often wish to model data that is a sequence or trajectory through time, for
instance audio signals, text (sequences of characters/words), currency exchange
rates, motion of animal
Modelling sequential data

Invariances across time
The current state depends on the past
Need to share data across time

Convolutional networks model invariances across space – can we do something
similar across time?

Yes - time-delay neural networks
Can we use units to act as memories?

Yes - recurrent networks
MLP Lecture 9 Recurrent Neural Networks 1: Modelling sequential data 3

Recap: Space invariance

Input 28x28 3x24x24 Feature Maps

 3x12x12 Pooling Layers

 6x8x8Feature Maps

 6x4x4
Pooling Layers

Local connectivity

Weight sharing

MLP Lecture 9 Recurrent Neural Networks 1: Modelling sequential data 4

Modelling sequences

t=0

t=1

t=2

t=3

.

x1 x2 x3

Imagine modelling a time
sequence of 3D vectors

Can model fixed context
with a feed-forward
network with previous
time input vectors added
to the network input

Model using 1-dimension
convolutions in time -
time-delay neural
network (TDNN)

Network takes into
account a finite context

MLP Lecture 9 Recurrent Neural Networks 1: Modelling sequential data 5

Modelling sequences

t-2

x1 x2 x3 x1 x2 x3

t-1

x1 x2 x3

t

output

hidden

input

2 frames of context

Imagine modelling a time
sequence of 3D vectors

Can model fixed context
with a feed-forward
network with previous
time input vectors added
to the network input

Model using 1-dimension
convolutions in time -
time-delay neural
network (TDNN)

Network takes into
account a finite context

MLP Lecture 9 Recurrent Neural Networks 1: Modelling sequential data 5

Modelling sequences

t-2

x1

x2

x3

t-1 t

output

1D conv
layer

input
t-3

fully-connected
layer

. . .

. . .

t-T

T frames of context

Imagine modelling a time
sequence of 3D vectors

Can model fixed context
with a feed-forward
network with previous
time input vectors added
to the network input

Model using 1-dimension
convolutions in time -
time-delay neural
network (TDNN)

Network takes into
account a finite context

MLP Lecture 9 Recurrent Neural Networks 1: Modelling sequential data 5

Modelling sequences

t-2

x1

x2

x3

t-1 t

output

1D conv
layer

input
t-3

fully-connected
layer

. . .

. . .

t-T

T frames of context

Imagine modelling a time
sequence of 3D vectors

Can model fixed context
with a feed-forward
network with previous
time input vectors added
to the network input

Model using 1-dimension
convolutions in time -
time-delay neural
network (TDNN)

Network takes into
account a finite context

MLP Lecture 9 Recurrent Neural Networks 1: Modelling sequential data 5

TDNNs in action

tackle late reverberations, DNNs should be able to model tem-
poral relationships across wide acoustic contexts.

TDNNs [5], which are feed-forward neural networks, with
the ability to model long-term temporal relationships, were used
here. We used the sub-sampling technique proposed in [6] to
achieve an acceptable training time.

In Section 3 we describe the time delay neural network ar-
chitecture in greater detail.

3. Neural network architecture
In a TDNN architecture the initial transforms are learnt on nar-
row contexts and the deeper layers process the hidden activa-
tions from increasingly wider contexts. Hence the higher layers
have the ability to learn longer temporal relationships. However
the training time of a TDNN is substantially larger than that of
a DNN, when modeling long temporal contexts, despite the use
of speed-up techniques such as [19].

In [6] a sub-sampling technique was proposed to reduce the
number of hidden activations computed in the TDNN, while en-
suring that the information from all time steps in the input con-
text was used. Figure 1 shows time steps at which activations
are computed, at each layer, and the dependencies between ac-
tivations across layers, both in a conventional TDNN (blue+red
edges) and a sub-sampled TDNN (red edges), in order to com-
pute the network output at time t. The use of sub-sampling
speeds up the training by ⇠ 5x in the baseline TDNN architec-
ture shown in Figure 1.

t-4

-1 +2

t

t-7 t+2

t-10 t-1 t+5

t-11 t+7

t-13 t+9

-7 +2

-1 +2

-2 +2

-1 +2 -1 +2

-3 +3 -3 +3

t+1 t+4 t-2 t-5 t-8

Layer 4

Layer 3

Layer 2

Layer 1

Figure 1: Computation in TDNN with sub-sampling (red) and
without sub-sampling (blue+red)

The hyper-parameters which define the sub-sampled TDNN
network structure are the set of frame offsets that we require
as an input to each layer. In the case pictured, these are
{�2,�1, 0, 1, 2}, {�1, 2}, {�3, 3} and {�7, 2}. In a conven-
tional TDNN, these input frame offsets would always be con-
tiguous. However, in our work we sub-sample these; in our
normal configuration, the frame splicing at the hidden layers
splices together just two frames, separated by a delay that in-
creases as we go to higher layers of the network [6].

In this paper we were able to operate on input contexts of up
to 280 ms without detriment in performance, using the TDNN.
Thus the TDNN has the capability to tackle corruptions due to
late reverberations.

Our TDNN uses the p-norm non-linearity [20]. We use a
group size of of 10, and the 2-norm.

3.1. Input Features

Mel-frequency cepstral coefficients (MFCCs) [21], without
cepstral truncation, were used as input to the neural network.
40 MFCCs were computed at each time index. MFCCs over a
wide asymmetric temporal context were provided to the neural
network. Different contexts were explored in this paper. 100
dimensional iVectors were also provided as an input to the net-
work, every time frame. Section 4 describes the iVector extrac-
tion process during training and decoding in greater detail.

3.2. Training recipe

The paper follows the training recipe detailed in [20]. It uses
greedy layer-wise supervised training, preconditioned stochas-
tic gradient descent (SGD) updates, an exponentially decreas-
ing learning rate schedule and mixing-up. Parallel training of
the DNNs using up to 18 GPUs was done using the model aver-
aging technique in [13].

3.2.1. Modified sMBR sequence training

Sequence training was done on the DNN, based on a state-level
variant of the Minimum Phone Error (MPE) criterion, called
sMBR [22] . The training recipe mostly follows [23], although
it has been modified for the parallel-training method. Training
is run in parallel using 12 GPUs, while periodically averaging
the parameters, just as in the cross-entropy training phase.

Our previous sMBR-based training recipe degraded results
on the ASpIRE setup, so we introduced a modification to the
recipe which we have since found to be useful more generally,
in other LVCSR tasks.

In the sMBR objective function, as for MPE, insertion er-
rors are not penalized. This can lead to larger number of inser-
tion errors when decoding with sMBR trained acoustic models.
Correcting this asymmetry in the sMBR objective function, by
penalizing insertions, was shown to improve the WER perfor-
mance of sMBR models by 10% relative. In standard sMBR
training [22, 24], the frame error is always set to zero if the
reference is silence, which means that insertions into silence
regions are not penalized. In other words, frames where the
reference alignment is silence are treated specially. (Note that
in our implementation several phones, including silence, vo-
calized noise and non-spoken noise, are treated as silence for
these purposes.) In our modified sMBR training method, we
treat silence as any other phone, except that all pdfs of silence
phones are collapsed into a single class for the frame-error com-
putation. This means that replacing one silence phone with an-
other silence phone is not penalized (e.g. replacing silence with
vocalized-noise is not penalized), but insertion of a non-silence
phone into a silence region is penalized. This is closer to the
WER metric that we actually care about, since WER is gener-
ally computed after filtering out noises, but does penalize in-
sertions. We call our modified criterion the “one-silence-class”
modification of sMBR.

4. iVector Extraction
In this section we describe the iVector estimation process
adopted during training and decoding. We discuss issues in es-
timating iVectors from noisy unsegmented speech recordings,
and in using these noisy estimates of iVectors as input to neural
networks.

On each frame we append a 100-dimensional iVector [25]
to the 40-dimensional MFCC input. The MFCC input is not

TDNN operating on 23
frames of context

Without sub-sampling
(blue+red)

With sub-sampling (red)

Peddinti et al, “ Reverberation robust acoustic modeling using i-vectors with time delay neural

networks”, Interspeech-2015, http://www.danielpovey.com/files/2015_interspeech_aspire.pdf

MLP Lecture 9 Recurrent Neural Networks 1: Modelling sequential data 6

http://www.danielpovey.com/files/2015_interspeech_aspire.pdf

Wavenet

van den Oord et al (2016), “WaveNet: A Generative Model for Raw Audio”,
https://arxiv.org/abs/1609.03499

MLP Lecture 9 Recurrent Neural Networks 1: Modelling sequential data 7

https://arxiv.org/abs/1609.03499

Networks with state

Feed-forward = finite context: feed-forward networks (even fancy ones like
Wavenet) compute the output based on a finite input history. Sometimes the
required context is known, but often it is not

State units: we would like a network with state across time – if an event happens,
we can potentially know about that event many time steps in the future

State units as memory – remember things for (potentially) an infinite time
State units as information compression – compress a sequence into a state
representation

Recurrent networks with state units

delayh

x

MLP Lecture 9 Recurrent Neural Networks 1: Modelling sequential data 8

Recurrent networks

x1 x2 x3

t

output

recurrent
hidden

input

MLP Lecture 9 Recurrent Neural Networks 1: Modelling sequential data 9

Graphical model of a recurrent network

delayh

x

y

MLP Lecture 9 Recurrent Neural Networks 1: Modelling sequential data 10

Graphical model of a recurrent network

delayh

x

y

ht�1

xt�1

yt�1

ht ht+1

xt+1xt

yt yt+1

Unfold a recurrent network in time

MLP Lecture 9 Recurrent Neural Networks 1: Modelling sequential data 10

Simple recurrent network

yk(t) = softmax

(
H∑

r=0

w
(2)
kr hr (t) + bk

)

hj(t) = sigmoid


d∑

s=0

w
(1)
js xs(t) +

H∑
r=0

w
(R)
jr hr (t − 1)︸ ︷︷ ︸

Recurrent part

+bj



Output (t)

Hidden (t)

Input (t) Hidden (t-1)

MLP Lecture 9 Recurrent Neural Networks 1: Modelling sequential data 11

Recurrent network unfolded in time

Hidden (t)

Output (t)

Input (t)

Hidden (t-1)

w(1)

w(2)

w(R)

Hidden (t+1)

Input (t-1)

Output (t-1)

Input (t+1)

Output (t+1)

w(2)w(2)

w(1)w(1)

w(R)
w(R) w(R)

View an RNN for a sequence of T inputs as a T -layer network with shared weights

Train an RNN by doing backprop through this unfolded network
Weight sharing

if two weights are constrained to be equal (w1 = w2) then they will stay equal if the
weight changes are equal (∂E/∂w1 = ∂E/∂w2)
achieve this by updating with (∂E/∂w1 + ∂E/∂w2) (cf Conv Nets)

MLP Lecture 9 Recurrent Neural Networks 1: Modelling sequential data 12

Recurrent network unfolded in time

Hidden (t)

Output (t)

Input (t)

Hidden (t-1)

w(1)

w(2)

w(R)

Hidden (t+1)

Input (t-1)

Output (t-1)

Input (t+1)

Output (t+1)

w(2)w(2)

w(1)w(1)

w(R)
w(R) w(R)

View an RNN for a sequence of T inputs as a T -layer network with shared weights

Train an RNN by doing backprop through this unfolded network

Weight sharing

if two weights are constrained to be equal (w1 = w2) then they will stay equal if the
weight changes are equal (∂E/∂w1 = ∂E/∂w2)
achieve this by updating with (∂E/∂w1 + ∂E/∂w2) (cf Conv Nets)

MLP Lecture 9 Recurrent Neural Networks 1: Modelling sequential data 12

Recurrent network unfolded in time

Hidden (t)

Output (t)

Input (t)

Hidden (t-1)

w(1)

w(2)

w(R)

Hidden (t+1)

Input (t-1)

Output (t-1)

Input (t+1)

Output (t+1)

w(2)w(2)

w(1)w(1)

w(R)
w(R) w(R)

View an RNN for a sequence of T inputs as a T -layer network with shared weights

Train an RNN by doing backprop through this unfolded network

Weight sharing

if two weights are constrained to be equal (w1 = w2) then they will stay equal if the
weight changes are equal (∂E/∂w1 = ∂E/∂w2)
achieve this by updating with (∂E/∂w1 + ∂E/∂w2) (cf Conv Nets)

MLP Lecture 9 Recurrent Neural Networks 1: Modelling sequential data 12

Bidirectional RNN

FHid (t)

Output (t)

Input (t)

FHid (t-1) FHid (t+1)

Input (t-1)

Output (t-1)

Input (t+1)

Output (t+1)

RHid (t)RHid (t-1) RHid (t+1)

Output a prediction that depends on the whole input sequence

Bidirectional RNN – combine an RNN moving forward in time, with one moving
backwards in time

State units provide a combined representation that depends on both the past and
the future

MLP Lecture 9 Recurrent Neural Networks 1: Modelling sequential data 13

Back-propagation through time (BPTT)

We can train a network by unfolding and back-propagating through time,
summing the derivatives for each weight as we go through the sequence

More efficiently, run as a recurrent network

cache the unit outputs at each timestep
cache the output errors at each timestep
then backprop from the final timestep to zero, computing the derivatives at each step
compute the weight updates by summing the derivatives across time

Expensive – backprop for a 1,000 item sequence equivalent to a 1,000-layer
feed-forward network

Truncated BPTT – backprop through just a few time steps (e.g. 20)

MLP Lecture 9 Recurrent Neural Networks 1: Modelling sequential data 14

Example 1: speech recognition with recurrent networks

time (ms)

fre
q (

Hz
)

0 200 400 600 800 1000 1200 1400
0

2000

4000

6000

8000

Recurrent
Neural
Network

Speech
Acoustics

Phoneme Probabilities

T Robinson et al (1996).
“The use of recurrent networks in
continuous speech recognition”,
in Automatic Speech and Speaker
Recognition Advanced Topics
(Lee et al (eds)), Kluwer, 233–258.
http://www.cstr.ed.ac.uk/

downloads/publications/1996/

rnn4csr96.pdf

MLP Lecture 9 Recurrent Neural Networks 1: Modelling sequential data 15

http://www.cstr.ed.ac.uk/downloads/publications/1996/rnn4csr96.pdf
http://www.cstr.ed.ac.uk/downloads/publications/1996/rnn4csr96.pdf
http://www.cstr.ed.ac.uk/downloads/publications/1996/rnn4csr96.pdf

Example 2: recurrent network language models

T Mikolov et al (2010).
“Recurrent Neural Network Based
Language Model”,
Interspeech
http://www.fit.vutbr.cz/research/

groups/speech/publi/2010/mikolov_

interspeech2010_IS100722.pdf

MLP Lecture 9 Recurrent Neural Networks 1: Modelling sequential data 16

http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf

Summary

Model sequences using finite context using feed-forward networks with
convolutions in time (TDNNs, Wavenet)

Model sequences using infinite context using recurrent neural networks (RNNs)

Unfolding an RNN gives a deep feed-forward network with shared weights

Train using back-propagation through time

Back-propagation through time

(Historical) examples on speech recognition and language modelling

Reading: Goodfellow et al, chapter 10 (sections 10.1, 10.2, 10.3)
http://www.deeplearningbook.org/contents/rnn.html

Next lecture: LSTM, sequence-sequence models

MLP Lecture 9 Recurrent Neural Networks 1: Modelling sequential data 17

http://www.deeplearningbook.org/contents/rnn.html

