
Convolutional Networks

Steve Renals

Machine Learning Practical — MLP Lecture 7
1 November 2017 / 6 November 2017

MLP Lecture 7 Convolutional Networks 1

Recap: Multi-layer network for MNIST

(image from: Michael Nielsen, Neural Networks and Deep Learning,

http://neuralnetworksanddeeplearning.com/chap6.html)

MLP Lecture 7 Convolutional Networks 2

http://neuralnetworksanddeeplearning.com/chap6.html

How can we make this better?

On MNIST, we can get about 2% error (or even better) using these kind of networks,
but

They ignore the spatial (2-D) structure of the input images – unroll each 28x28
image into a 784-D vector

Each hidden unit looks at all the units in the layer below, so pixels that are
spatially separate are treated the same way as pixels that are adjacent

There is no simple way for networks to learn the same features (e.g. edges) at
different places in the input image

MLP Lecture 7 Convolutional Networks 3

Convolutional networks

Convolutional networks address these issues through

Local receptive fields in which hidden units are connected to local patches of
the layer below,

Weight sharing which enables the construction of feature maps,

Pooling which condenses information from the previous layer.

MLP Lecture 7 Convolutional Networks 4

Fully connected hidden layer – 576 hidden units

Input 28x28 Hidden 24x24

MLP Lecture 7 Convolutional Networks 5

Local receptive fields – 24x24 hidden units

Input 28x28 Hidden 24x24

MLP Lecture 7 Convolutional Networks 6

Local receptive fields

Each hidden unit is connected to a small (m ×m) region of the input space – the
local receptive field

If we have a d × d input space, then we have (d −m + 1) × (d −m + 1) hidden
unit space

Each hidden unit extracts a feature from “its” region of input space

Here the receptive field “stride length” is 1, it could be larger

MLP Lecture 7 Convolutional Networks 7

Shared weights

Constrain each hidden unit hi ,j to extract the same feature by sharing weights
across the receptive fields

For hidden unit hi ,j

hi ,j = sigmoid(
m−1∑
k=0

m−1∑
`=0

wk,`xi+k,j+` + b)

where wk,` are elements of the shared m ×m weight matrix w, b is the shared
bias, and xi+k,j+` is the input at i + k, j + `

We use k and l to index into the receptive field, whose top left corner is at xi ,j

MLP Lecture 7 Convolutional Networks 8

Shared weights & Receptive Fields

Input 28x28 24x24 Feature Map

h(i,j)

x(i,j) x(i,j+4)

x(i+4,j+4)x(i+4,j)

l

k

MLP Lecture 7 Convolutional Networks 9

Feature Maps

Local receptive fields with shared weights result in a feature map
a map showing where the feature corresponding to the shared weight matrix
(kernel) occurs in the image

Feature map encodes translation invariance
extract the same features irrespective of where an image is located in the input

Multiple feature maps
a hidden layer can consist of F different feature maps – in this case F × 24 ∗ 24 units
in total

MLP Lecture 7 Convolutional Networks 10

Feature Maps

Input 28x28 3x24x24 Feature Maps

MLP Lecture 7 Convolutional Networks 11

Weights and Connections

Consider an MNIST hidden layer with feature maps using a 5x5 kernels (resulting in
24x24 feature maps):

Number of connections per feature map:
24 × 24 × 5 × 5 = 14, 400 connections
24 × 24 = 576 biases

But since weights are shared within a feature map, we have
5 × 5 = 25 weights
1 bias

Consider the case where we have 40 feature maps. We will have

1,000 (25×40) weights (+ 40 biases)

but 576,000 (+ 23,040) connections

In comparison a 100 hidden unit MLP from the first coursework has
784 × 100 + 100 = 78, 500 input-hidden weights

MLP Lecture 7 Convolutional Networks 12

Learning image kernels

https://en.wikipedia.org/wiki/Kernel_

(image_processing)

Image kernels have been designed
and used for feature extraction in
image processing (e.g. edge
detection)

However, we can learn multiple
kernel functions (feature maps) by
optimising the network cost
function

Automating feature engineering

MLP Lecture 7 Convolutional Networks 13

https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://en.wikipedia.org/wiki/Kernel_(image_processing)

Convolutional Layer

This type of feature map is often called a Convolutional layer
We can write the feature map hidden unit equation:

hi ,j = sigmoid(
m∑

k=1

m∑
`=1

wk,`xi+k,j+` + b)

h = sigmoid(w ⊗ x + b)

⊗ is a cross-correlation and is closely related to a convolution

In signal processing a 2D convolution is written as

Hi ,j = sigmoid(
m∑

k=1

m∑
`=1

vk,`xi−k,j−` + b)

H = sigmoid(v ∗ x + b)

If we “flip” (reflect horizontally and vertically) w (cross-correlation) then we
obtain v (convolution)

MLP Lecture 7 Convolutional Networks 14

Convolution vs Cross-correlation

Cross-correlation is often referred to as convolution in deep learning....

This is not problematic since the specific properties of convolution but not of
cross-correlation (commutativity and associativity) are rarely (if ever) required for
deep learning

In machine learning the network learns the kernel appropriate to its orientation –
so if convolution is implemented with a flipped kernel, it will learn that it is a
flipped implementation

So it is OK to use an efficient (flipped) implementation of convolution for
convolutional layers

MLP Lecture 7 Convolutional Networks 15

Pooling (subsampling)

24x24 Feature Map

12x12
Pooling Layer

MLP Lecture 7 Convolutional Networks 16

Pooling

Pooling or subsampling takes a feature map and reduces it in size – e.g. by
transforming a set of 2x2 regions to a single unit

Pooling functions

Max-pooling – takes the maximum value of the units in the region (c.f. maxout)
Lp-pooling – take the Lp norm of the units in the region:

h′ =

 ∑
i∈region

hpi

1/p

Average- / Sum-pooling – takes the average / sum value of the pool

Information reduction – pooling removes precise location information for a feature

Apply pooling to each feature map separately

MLP Lecture 7 Convolutional Networks 17

Putting it together – convolutional+pooling layer

Input 28x28 3x24x24 Feature Maps

 3x12x12 Pooling Layers

MLP Lecture 7 Convolutional Networks 18

ConvNet – Convolutional Network

Input 28x28 3x24x24 Feature Maps

 3x12x12 Pooling Layers
Hidden
Layer

Softmax
Output
Layer

Simple ConvNet:

Convolutional layer with max-pooling
Final fully connected hidden layer (no sharing weight)
Softmax output layer
With 20 feature maps and a final hidden layer of 100 hidden unit:
20 × (5 × 5 + 1) + 20 × 12 × 12 × 100 + 100 + 100 × 10 + 10 = 289, 630 weights

MLP Lecture 7 Convolutional Networks 19

Multiple input images

If we have a colour image, each pixel is defined by 3 RGB values – so our input is
in fact 3 images (one R, one G, and one B)

If we want stack convolutional layers, then the second layer needs to take input
from all the feature maps in the first layer

Local receptive fields across multiple input images

In a second convolutional layer (C2) on top of 20 12 × 12 feature maps, each unit
will look at 20 × 5 × 5 input units(combining 20 receptive fields each in the same
spatial location)

Typically do not tie weights across feature maps, so each unit in C2 has
20 × 5 × 5 = 500 weights, plus a bias. (Assuming a 5 × 5 kernel size)

MLP Lecture 7 Convolutional Networks 20

Stacking convolutional layers

Input 28x28 3x24x24 Feature Maps

 3x12x12 Pooling Layers

 6x8x8Feature Maps

 6x4x4
Pooling Layers

MLP Lecture 7 Convolutional Networks 21

Example: LeNet5 (LeCun et al, 1997)

MLP Lecture 7 Convolutional Networks 22

MNIST Results (1997)

Fig. 9. Error rate on the test set (%) for various classification methods. [deslant] indicates that the
classifier was trained and tested on the deslanted version of the database. [dist] indicates that the
training set was augmented with artificially distorted examples. [16 16] indicates that the system
used the 16 16 pixel images. The uncertainty in the quoted error rates is about 0.1%.

3) PCA and Polynomial Classifier: Following [53] and
[54], a preprocessing stage was constructed which computes
the projection of the input pattern on the 40 principal
components of the set of training vectors. To compute the
principal components, the mean of each input component
was first computed and subtracted from the training
vectors. The covariance matrix of the resulting vectors
was then computed and diagonalized using singular value
decomposition. The 40-dimensional feature vector was used
as the input of a second degree polynomial classifier. This
classifier can be seen as a linear classifier with 821 inputs,
preceded by a module that computes all products of pairs of
input variables. The error on the regular test set was 3.3%.
4) RBF Network: Following [55], an RBF network was

constructed. The first layer was composed of 1000 Gaussian
RBF units with 28 28 inputs, and the second layer was a
simple 1000 inputs/ten outputs linear classifier. The RBF
units were divided into ten groups of 100. Each group of
units was trained on all the training examples of one of
the ten classes using the adaptive K-means algorithm. The
second-layer weights were computed using a regularized
pseudoinverse method. The error rate on the regular test
set was 3.6%.

5) One-Hidden-Layer Fully Connected Multilayer NN:
Another classifier that we tested was a fully connected
multilayer NN with two layers of weights (one hidden layer)
trained with the version of back-propagation described in
Appendix C. Error on the regular test set was 4.7% for a
network with 300 hidden units and 4.5% for a network with
1000 hidden units. Using artificial distortions to generate
more training data brought only marginal improvement:
3.6% for 300 hidden units and 3.8% for 1000 hidden units.
When deslanted images were used, the test error jumped
down to 1.6% for a network with 300 hidden units.
It remains somewhat of a mystery that networks with

such a large number of free parameters manage to achieve
reasonably low testing errors. We conjecture that the dy-
namics of gradient descent learning in multilayer nets
has a “self-regularization” effect. Because the origin of
weight space is a saddle point that is attractive in al-
most every direction, the weights invariably shrink during
the first few epochs (recent theoretical analysis seem to
confirm this [56]). Small weights cause the sigmoids to
operate in the quasi-linear region, making the network
essentially equivalent to a low-capacity, single-layer net-
work. As the learning proceeds the weights grow, which

2290 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998

MLP Lecture 7 Convolutional Networks 23

Training Convolutional Networks

Train convolutional networks with a straightforward but careful application of
backprop / SGD

Exercise: prior to the next lecture, write down the gradients for the weights and
biases of the feature maps in a convolutional network. Remember to take account
of weight sharing.

Next lecture: implementing convolutional networks: how to deal with local
receptive fields and tied weights, computing the required gradients...

MLP Lecture 7 Convolutional Networks 24

Summary

Convolutional networks include local receptive fields, weight sharing, and pooling
leading to:

Modelling the spatial structure
Translation invariance
Local feature detection

Reading:
Michael Nielsen, Neural Networks and Deep Learning (ch 6)
http://neuralnetworksanddeeplearning.com/chap6.html

Yann LeCun et al, “Gradient-Based Learning Applied to Document Recognition”,
Proc IEEE, 1998.
http://dx.doi.org/10.1109/5.726791

Ian Goodfellow, Yoshua Bengio & Aaron Courville,
Deep Learning (ch 9)
http://www.deeplearningbook.org/contents/convnets.html

MLP Lecture 7 Convolutional Networks 25

http://neuralnetworksanddeeplearning.com/chap6.html
http://dx.doi.org/10.1109/5.726791
http://www.deeplearningbook.org/contents/convnets.html

