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Computational graphs

Each node is an operation

Data flows between nodes (scalars, vectors, matrices, tensors)

More complex operations can be formed by composing simpler operations
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Computational graph example 1

x

x y

z

Graph for × to compute z = xy
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Computational graph example 2

dot +

sigmoid

bwx

y

Graph for logistic regression:
y = sigmoid(wᵀx + b)
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Computational graph example 3

matmul +

relu

X W b

H

Graph for ReLU layer:
H = relu(WX + b)
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Computational graphs and back-propagation
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Chain rule of differentiation as the backward pass through the computational graph
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Computational graphs

Each node is an operation

Data flows between nodes (scalars, vectors, matrices, tensors)

More complex operations can be formed by composing simpler operations

Implement chain rule of differentiation as a backward pass through the graph

Back-propagation: Multiply the local gradient of an operation with an incoming
gradient (or sum of gradients)

See http://colah.github.io/posts/2015-08-Backprop/
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Batch Normalisation
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Compute mean and 
variance of each hidden 

unit activation across 
the minibatch (size M)

Ioffe & Szegedy, “Batch normalization”, ICML-2015
http://www.jmlr.org/proceedings/papers/v37/ioffe15.html
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Computational graph for batch normalisation

https://kratzert.github.io/2016/02/12/

understanding-the-gradient-flow-through-the-batch-normalization-layer.

html
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Pretraining

Why is training deep networks hard?
Vanishing (or exploding) gradients – gradients for layers closer to the input layer are
computed multiplicatively using backprop
If sigmoid/tanh hidden units near the output saturate then back-propagated
gradients will be very small
Good discussion in chapter 5 of Neural Networks and Deep Learning

Solve by stacked pretraining
Train the first hidden layer
Add a new hidden layer, and train only the parameters relating to the new hidden
layer. Repeat.
The use the pretrained weights to initialise the network – emphfine-tune the
complete network using gradient descent

Approaches to pre-training
Supervised: Layer-by-layer cross-entropy training
Unsupervised: Autoencoders
Unsupervised: Restricted Boltzmann machines (not covered in this course)
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Greedy Layer-by-layer cross-entropy training

1 Train a network with one hidden layer

2 Remove the output layer and weights leading to the output layer

3 Add an additional hidden layer and train only the newly added weights

4 Goto 2 or finetune & stop if deep enough

….

….

….
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Autoencoders

An autoencoder is a neural network trained to map its input into a distributed
representation from which the input can be reconstructed

Example: single hidden layer network, with an output the same dimension as the
input, trained to reproduce the input using squared error cost function

….

….

….
y:  d dimension outputs

x:  d dimension inputs

learned representation

E = �1

2
||y � x||2
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Stacked autoencoders

Can the hidden layer just copy the input (if it has an equal or higher dimension)?

In practice experiments show that nonlinear autoencoders trained with stochastic
gradient descent result in useful hidden representations
Early stopping acts as a regulariser

Stacked autoencoders – train a sequence of autoencoders, layer-by-layer

First train a single hidden layer autoencoder
Then use the learned hidden layer as the input to a new autoencoder
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Stacked Autoencoders

….

….

….

….
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…. ….

….

….

Input

Hidden 1

Hidden 2

Hidden 3
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Pretraining using Stacked autoencoder

….

….

….

….

Input

Hidden 1

Hidden 2

Hidden 3

Initialise hidden layers
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Pretraining using Stacked autoencoder

….

….

….

….

Input

Hidden 1

Hidden 2

Hidden 3

…. Output

Train output layer
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Pretraining using Stacked autoencoder

….

….

….

….

Input

Hidden 1

Hidden 2

Hidden 3

…. Output

Fine tune whole network
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Denoising Autoencoders

Basic idea: Map from a corrupted version of the input to a clean version (at the
output)

Forces the learned representation to be stable and robust to noise and variations
in the input

To perform the denoising task well requires a representation which models the
important structure in the input

The aim is to learn a representation that is robust to noise, not to perform the
denoising mapping as well as possible
Noise in the input:

Random Gaussian noise added to each input vector
Masking – randomly setting some components of the input vector to 0
“Salt & Pepper” – randomly setting some components of the input vector to 0 and
others to 1

Stacked denoising autoencoders – noise is only applied to the input vectors, not to
the learned representations
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Denoising Autoencoder

….

….

….
y:  d dimension outputs

x:  d dimension inputs
(clean)

learned representation

E = �1

2
||y � x||2

x’:  d dimension inputs
(noisy)

….
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Summary

Layer-by-layer Pretraining and Autoencoders

For many tasks (e.g. MNIST) pre-training seems to be necessary / useful for
training deep networks
For some tasks with very large sets of training data (e.g. speech recognition)
pre-training may not be necessary
(Can also pre-train using stacked restricted Boltzmann machines)

Reading: Michael Nielsen, chapter 5 of Neural Networks and Deep Learning
http://neuralnetworksanddeeplearning.com/chap5.html

Pascal Vincent et al, “Stacked Denoising Autoencoders: Learning Useful
Representations in a Deep Network with a Local Denoising Criterion”, JMLR,
11:3371–3408, 2010.
http://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf
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